
PyUNLocBoX documentation
Release 0.5.1

Michaël Defferrard, EPFL LTS2

Jul 04, 2017

Contents

1 Installation 3

2 Contributing 5

3 Authors 7
3.1 Tutorials . 7
3.2 Reference guide . 20
3.3 History . 41
3.4 References . 43

Bibliography 45

Python Module Index 47

i

ii

PyUNLocBoX documentation, Release 0.5.1

The PyUNLocBoX is a convex optimization package based on proximal splitting methods and implemented in
Python (a Matlab counterpart exists). It is a free software, distributed under the BSD license, and available on
PyPI. The documentation is available online and development takes place on GitHub.

The package is designed to be easy to use while allowing any advanced tasks. It is not meant to be a black-box
optimization tool. You’ll have to carefully design your solver. In exchange you’ll get full control of what the
package does for you, without the pain of rewriting the proximity operators and the solvers and with the added
benefit of tested algorithms. With this package, you can focus on your problem and the best way to solve it rather
that the details of the algorithms. It comes with the following solvers:

• Gradient descent

• Forward-backward splitting algorithm (FISTA, ISTA)

• Douglas-Rachford splitting algorithm

• Generalized forward-backward

• Monotone+Lipschitz forward-backward-forward primal-dual algorithm

• Projection-based primal-dual algorithm

Moreover, the following acceleration schemes are included:

• FISTA acceleration scheme

• Backtracking based on a quadratic approximation of the objective

• Regularized nonlinear acceleration (RNA)

To compose your objective, you can either define your custom functions (which should implement an evaluation
method and a gradient or proximity method) or use one of the followings:

• L1-norm

• L2-norm

• TV-norm

• Nuclear-norm

• Projection on the L2-ball

Following is a typical usage example who solves an optimization problem composed by the sum of two convex
functions. The functions and solver objects are first instantiated with the desired parameters. The problem is then
solved by a call to the solving function.

>>> import pyunlocbox
>>> f1 = pyunlocbox.functions.norm_l2(y=[4, 5, 6, 7])
>>> f2 = pyunlocbox.functions.dummy()
>>> solver = pyunlocbox.solvers.forward_backward()
>>> ret = pyunlocbox.solvers.solve([f1, f2], [0., 0, 0, 0], solver, atol=1e-5)
Solution found after 9 iterations:

objective function f(sol) = 6.714385e-08
stopping criterion: ATOL

>>> ret['sol']
array([3.99990766, 4.99988458, 5.99986149, 6.99983841])

Contents 1

https://en.wikipedia.org/wiki/Proximal_gradient_method
https://lts2.epfl.ch/unlocbox
https://pypi.python.org/pypi/pyunlocbox
https://pyunlocbox.readthedocs.io
https://github.com/epfl-lts2/pyunlocbox

PyUNLocBoX documentation, Release 0.5.1

2 Contents

CHAPTER 1

Installation

The PyUnLocBox is available on PyPI:

$ pip install pyunlocbox

3

PyUNLocBoX documentation, Release 0.5.1

4 Chapter 1. Installation

CHAPTER 2

Contributing

The development of this package takes place on GitHub. Issues and pull requests are welcome.

You can improve or add solvers, functions, and acceleration schemes in pyunlocbox/solvers.py,
pyunlocbox/functions.py, and pyunlocbox/acceleration.py, along with their corresponding
unit tests in pyunlocbox/tests/test_*.py (with reasonable coverage) and documentation in doc/
reference/*.rst. If you have a nice example to demonstrate the use of the introduced functionality, please
consider adding a tutorial in doc/tutorials.

Do not forget to update README.rst and doc/history.rst with e.g. new features or contributors. The
version number needs to be updated in setup.py and pyunlocbox/__init__.py.

Please make sure that your changes pass the tests (enforced by CI) and check the generated coverage report at
htmlcov/index.html to make sure the tests reasonably cover the changes you’ve introduced:

$ make lint
$ make test
$ make docall

5

https://github.com/epfl-lts2/pyunlocbox

PyUNLocBoX documentation, Release 0.5.1

6 Chapter 2. Contributing

CHAPTER 3

Authors

PyUNLocBoX was started in 2014 as an academic project for research purpose at the EPFL LTS2 laboratory.

Development lead :

• Rodrigo Pena from EPFL LTS2 <rodrigo.pena@epfl.ch>

• Michaël Defferrard from EPFL LTS2 <michael.defferrard@epfl.ch>

Contributors :

• Alexandre Lafaye from EPFL LTS2 <alexandre.lafaye@epfl.ch>

• Basile Châtillon from EPFL LTS2 <basile.chatillon@epfl.ch>

• Nicolas Rod from EPFL LTS2 <nicolas.rod@epfl.ch>

• Nathanaël Perraudin from EPFL LTS2 <nathanael.perraudin@epfl.ch>

Tutorials

The following are some tutorials which show and explain how to use the toolbox to solve some real problems.
They goes in increasing degree of difficulty. If you have never used the toolbox before, you are encouraged to
follow them in order as they build one upon the other.

Simple least square problem

This simplistic example is only meant to demonstrate the basic workflow of the toolbox. Here we want to solve
a least square problem, i.e. we want the solution to converge to the original signal without any constraint. Lets
define this signal by :

>>> y = [4, 5, 6, 7]

The first function to minimize is the sum of squared distances between the current signal x and the original y. For
this purpose, we instantiate an L2-norm object :

>>> from pyunlocbox import functions
>>> f1 = functions.norm_l2(y=y)

7

https://lts2.epfl.ch
mailto:rodrigo.pena@epfl.ch
mailto:michael.defferrard@epfl.ch
mailto:alexandre.lafaye@epfl.ch
mailto:basile.chatillon@epfl.ch
mailto:nicolas.rod@epfl.ch
mailto:nathanael.perraudin@epfl.ch

PyUNLocBoX documentation, Release 0.5.1

This standard function object provides the eval(), grad() and prox() methods that will be useful to the
solver. We can evaluate them at any given point :

>>> f1.eval([0, 0, 0, 0])
126
>>> f1.grad([0, 0, 0, 0])
array([-8, -10, -12, -14])
>>> f1.prox([0, 0, 0, 0], 1)
array([2.66666667, 3.33333333, 4. , 4.66666667])

We need a second function to minimize, which usually describes a constraint. As we have no constraint, we just
define a dummy function object by hand. We have to define the _eval() and _grad() methods as the solver
we will use requires it :

>>> f2 = functions.func()
>>> f2._eval = lambda x: 0
>>> f2._grad = lambda x: 0

Note: We could also have used the pyunlocbox.functions.dummy function object.

We can now instantiate the solver object :

>>> from pyunlocbox import solvers
>>> solver = solvers.forward_backward()

And finally solve the problem :

>>> x0 = [0., 0., 0., 0.]
>>> ret = solvers.solve([f2, f1], x0, solver, atol=1e-5, verbosity='HIGH')

func evaluation: 0.000000e+00
norm_l2 evaluation: 1.260000e+02

INFO: Forward-backward method
Iteration 1 of forward_backward:

func evaluation: 0.000000e+00
norm_l2 evaluation: 1.400000e+01
objective = 1.40e+01

Iteration 2 of forward_backward:
func evaluation: 0.000000e+00
norm_l2 evaluation: 2.963739e-01
objective = 2.96e-01

Iteration 3 of forward_backward:
func evaluation: 0.000000e+00
norm_l2 evaluation: 7.902529e-02
objective = 7.90e-02

Iteration 4 of forward_backward:
func evaluation: 0.000000e+00
norm_l2 evaluation: 5.752265e-02
objective = 5.75e-02

Iteration 5 of forward_backward:
func evaluation: 0.000000e+00
norm_l2 evaluation: 5.142032e-03
objective = 5.14e-03

Iteration 6 of forward_backward:
func evaluation: 0.000000e+00
norm_l2 evaluation: 1.553851e-04
objective = 1.55e-04

Iteration 7 of forward_backward:
func evaluation: 0.000000e+00
norm_l2 evaluation: 5.498523e-04
objective = 5.50e-04

Iteration 8 of forward_backward:

8 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

func evaluation: 0.000000e+00
norm_l2 evaluation: 1.091372e-04
objective = 1.09e-04

Iteration 9 of forward_backward:
func evaluation: 0.000000e+00
norm_l2 evaluation: 6.714385e-08
objective = 6.71e-08

Solution found after 9 iterations:
objective function f(sol) = 6.714385e-08
stopping criterion: ATOL

The solving function returns several values, one is the found solution :

>>> ret['sol']
array([3.99990766, 4.99988458, 5.99986149, 6.99983841])

Another one is the value returned by each function objects at each iteration. As we passed two function objects
(L2-norm and dummy), the objective is a 2 by 11 (10 iterations plus the evaluation at x0) ndarray. Lets plot a
convergence graph out of it :

>>> import numpy as np
>>> objective = np.array(ret['objective'])
>>> import matplotlib.pyplot as plt
>>> _ = plt.figure()
>>> _ = plt.semilogy(objective[:, 1], 'x', label='L2-norm')
>>> _ = plt.semilogy(objective[:, 0], label='Dummy')
>>> _ = plt.semilogy(np.sum(objective, axis=1), label='Global objective')
>>> _ = plt.grid(True)
>>> _ = plt.title('Convergence')
>>> _ = plt.legend(numpoints=1)
>>> _ = plt.xlabel('Iteration number')
>>> _ = plt.ylabel('Objective function value')

3.1. Tutorials 9

PyUNLocBoX documentation, Release 0.5.1

0 1 2 3 4 5 6 7 8 9
Iteration number

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103
O

b
je

ct
iv

e
 f

u
n
ct

io
n
 v

a
lu

e
Convergence

L2-norm
Dummy
Global objective

The above graph shows an exponential convergence of the objective function. The global objective is obviously
only composed of the L2-norm as the dummy function object was defined to always evaluate to 0 (f2._eval =
lambda x: 0).

Compressed sensing using forward-backward

This tutorial presents a compressed sensing problem solved by the forward-backward splitting algorithm. The
convex optimization problem is the sum of a data fidelity term and a regularization term which expresses a prior
on the sparsity of the solution, given by

min
𝑥

‖𝐴𝑥− 𝑦‖22 + 𝜏‖𝑥‖1

where y are the measurements, A is the measurement matrix and 𝜏 expresses the trade-off between the two terms.

The number of necessary measurements m is computed with respect to the signal size n and the sparsity level S in
order to very often perform a perfect reconstruction. See [CR07] for details.

>>> n = 5000
>>> S = 100
>>> import numpy as np
>>> m = int(np.ceil(S * np.log(n)))
>>> print('Number of measurements: {}'.format(m))
Number of measurements: 852
>>> print('Compression ratio: {:3.2f}'.format(float(n) / m))
Compression ratio: 5.87

We generate a random measurement matrix A:

>>> np.random.seed(1) # Reproducible results.
>>> A = np.random.normal(size=(m, n))

10 Chapter 3. Authors

https://en.wikipedia.org/wiki/Compressed_sensing

PyUNLocBoX documentation, Release 0.5.1

Create the S sparse signal x:

>>> x = np.zeros(n)
>>> I = np.random.permutation(n)
>>> x[I[0:S]] = np.random.normal(size=S)
>>> x = x / np.linalg.norm(x)

Generate the measured signal y:

>>> y = np.dot(A, x)

The prior objective to minimize is defined by

𝑓1(𝑥) = 𝜏‖𝑥‖1

which can be expressed by the toolbox L1-norm function object. It can be instantiated as follows, while setting
the regularization parameter tau:

>>> from pyunlocbox import functions
>>> tau = 1.0
>>> f1 = functions.norm_l1(lambda_=tau)

The fidelity objective to minimize is defined by

𝑓2(𝑥) = ‖𝐴𝑥− 𝑦‖22

which can be expressed by the toolbox L2-norm function object. It can be instantiated as follows:

>>> f2 = functions.norm_l2(y=y, A=A)

or alternatively as follows:

>>> f3 = functions.norm_l2(y=y)
>>> f3.A = lambda x: np.dot(A, x)
>>> f3.At = lambda x: np.dot(A.T, x)

Note: In this case the forward and adjoint operators were passed as functions not as matrices.

A third alternative would be to define the function object by hand:

>>> f4 = functions.func()
>>> f4._grad = lambda x: 2.0 * np.dot(A.T, np.dot(A, x) - y)
>>> f4._eval = lambda x: np.linalg.norm(np.dot(A, x) - y)**2

Note: The three alternatives to instantiate the function objects (f2, f3 and f4) are strictly equivalent and give the
exact same results.

Now that the two function objects to minimize (the L1-norm and the L2-norm) are instantiated, we can instantiate
the solver object. The step size for optimal convergence is 1

𝛽 where 𝛽 is the Lipschitz constant of the gradient of
f2, f3, f4 given by:

𝛽 = 2 · ‖𝐴‖2op = 2 · 𝜆𝑚𝑎𝑥(𝐴
*𝐴).

To solve this problem, we use the Forward-Backward splitting algorithm which is instantiated as follows:

>>> step = 0.5 / np.linalg.norm(A, ord=2)**2
>>> from pyunlocbox import solvers
>>> solver = solvers.forward_backward(step=step)

3.1. Tutorials 11

PyUNLocBoX documentation, Release 0.5.1

Note: A complete description of the constructor parameters and default values is given by the solver object
pyunlocbox.solvers.forward_backward reference documentation.

After the instantiations of the functions and solver objects, the setting of a starting point x0, the problem is solved
by the toolbox solving function as follows:

>>> x0 = np.zeros(n)
>>> ret = solvers.solve([f1, f2], x0, solver, rtol=1e-4, maxit=300)
Solution found after 151 iterations:

objective function f(sol) = 7.668167e+00
stopping criterion: RTOL

Note: A complete description of the parameters, their default values and the returned values is given by the
solving function pyunlocbox.solvers.solve() reference documentation.

Let’s display the results:

>>> import matplotlib.pyplot as plt
>>> _ = plt.figure()
>>> _ = plt.plot(x, 'o', label='Original')
>>> _ = plt.plot(ret['sol'], 'xr', label='Reconstructed')
>>> _ = plt.grid(True)
>>> _ = plt.title('Achieved reconstruction')
>>> _ = plt.legend(numpoints=1)
>>> _ = plt.xlabel('Signal dimension number')
>>> _ = plt.ylabel('Signal value')

0 1000 2000 3000 4000 5000
Signal dimension number

0.3

0.2

0.1

0.0

0.1

0.2

0.3

S
ig

n
a
l
v
a
lu

e

Achieved reconstruction

Original
Reconstructed

The above figure shows a good reconstruction which is both sparse (thanks to the L1-norm objective) and close to

12 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

the measurements (thanks to the L2-norm objective).

Let’s display the convergence of the two objective functions:

>>> objective = np.array(ret['objective'])
>>> _ = plt.figure()
>>> _ = plt.semilogy(objective[:, 0], label='L1-norm objective')
>>> _ = plt.semilogy(objective[:, 1], label='L2-norm objective')
>>> _ = plt.semilogy(np.sum(objective, axis=1), label='Global objective')
>>> _ = plt.grid(True)
>>> _ = plt.title('Convergence')
>>> _ = plt.legend()
>>> _ = plt.xlabel('Iteration number')
>>> _ = plt.ylabel('Objective function value')

0 20 40 60 80 100 120 140 160
Iteration number

10-2

10-1

100

101

102

103

O
b
je

ct
iv

e
 f

u
n
ct

io
n
 v

a
lu

e

Convergence

L1-norm objective
L2-norm objective
Global objective

Compressed sensing using Douglas-Rachford

This tutorial presents a compressed sensing problem solved by the Douglas-Rachford splitting algorithm. The
convex optimization problem, a term which expresses a prior on the sparsity of the solution constrained by some
data fidelity, is given by

min
𝑥

‖𝑥‖1 s.t. ‖𝐴𝑥− 𝑦‖2 ≤ 𝜖

where y are the measurements and A is the measurement matrix.

The number of necessary measurements m is computed with respect to the signal size n and the sparsity level S in
order to very often perform a perfect reconstruction. See [CR07] for details.

>>> n = 900
>>> S = 45

3.1. Tutorials 13

https://en.wikipedia.org/wiki/Compressed_sensing

PyUNLocBoX documentation, Release 0.5.1

>>> import numpy as np
>>> m = int(np.ceil(S * np.log(n)))
>>> print('Number of measurements: {}'.format(m))
Number of measurements: 307
>>> print('Compression ratio: {:3.2f}'.format(float(n) / m))
Compression ratio: 2.93

We generate a random measurement matrix A:

>>> np.random.seed(1) # Reproducible results.
>>> A = np.random.normal(size=(m, n))

Create the S sparse signal x:

>>> x = np.zeros(n)
>>> I = np.random.permutation(n)
>>> x[I[0:S]] = np.random.normal(size=S)
>>> x = x / np.linalg.norm(x)

Generate the measured signal y:

>>> y = np.dot(A, x)

The first objective function to minimize is defined by

𝑓1(𝑥) = ‖𝑥‖1

which can be expressed by the toolbox L1-norm function object. It can be instantiated as follows:

>>> from pyunlocbox import functions
>>> f1 = functions.norm_l1()

The second objective function to minimize is defined by

𝑓2(𝑥) = 𝜄𝐶(𝑥)

where 𝜄𝐶() is the indicator function of the set 𝐶 = {𝑧 ∈ R𝑛 | ‖𝐴𝑧 − 𝑦‖2 ≤ 𝜖} which is zero if 𝑧 is in the set and
infinite otherwise. This function can be expressed by the toolbox L2-ball function object which can be instantiated
as follows:

>>> f2 = functions.proj_b2(epsilon=1e-7, y=y, A=A, tight=False,
... nu=np.linalg.norm(A, ord=2)**2)

Now that the two function objects to minimize (the L1-norm and the L2-ball) are instantiated, we can instantiate
the solver object. To solve this problem, we use the Douglas-Rachford splitting algorithm which is instantiated as
follows:

>>> from pyunlocbox import solvers
>>> solver = solvers.douglas_rachford(step=1e-2)

After the instantiations of the functions and solver objects, the setting of a starting point x0, the problem is solved
by the toolbox solving function as follows:

>>> x0 = np.zeros(n)
>>> ret = solvers.solve([f1, f2], x0, solver, rtol=1e-4, maxit=300)
Solution found after 43 iterations:

objective function f(sol) = 5.607407e+00
stopping criterion: RTOL

Let’s display the results:

14 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

>>> import matplotlib.pyplot as plt
>>> _ = plt.figure()
>>> _ = plt.plot(x, 'o', label='Original')
>>> _ = plt.plot(ret['sol'], 'xr', label='Reconstructed')
>>> _ = plt.grid(True)
>>> _ = plt.title('Achieved reconstruction')
>>> _ = plt.legend(numpoints=1)
>>> _ = plt.xlabel('Signal dimension number')
>>> _ = plt.ylabel('Signal value')

0 100 200 300 400 500 600 700 800 900
Signal dimension number

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

S
ig

n
a
l
v
a
lu

e

Achieved reconstruction

Original
Reconstructed

The above figure shows a good reconstruction which is both sparse (thanks to the L1-norm objective) and close to
the measurements (thanks to the L2-ball constraint).

Let’s display the convergence of the objective function:

>>> objective = np.array(ret['objective'])
>>> _ = plt.figure()
>>> _ = plt.semilogy(objective[:, 0], label='L1-norm objective')
>>> _ = plt.grid(True)
>>> _ = plt.title('Convergence')
>>> _ = plt.legend()
>>> _ = plt.xlabel('Iteration number')
>>> _ = plt.ylabel('Objective function value')

3.1. Tutorials 15

PyUNLocBoX documentation, Release 0.5.1

0 5 10 15 20 25 30 35 40 45
Iteration number

100

101

102
O

b
je

ct
iv

e
 f

u
n
ct

io
n
 v

a
lu

e
Convergence

L1-norm objective

Image reconstruction (Forward-Backward, Total Variation, L2-norm)

This tutorial presents an image reconstruction problem solved by the Forward-Backward splitting algorithm. The
convex optimization problem is the sum of a data fidelity term and a regularization term which expresses a prior
on the smoothness of the solution, given by

min
𝑥

𝜏‖𝑔(𝑥)− 𝑦‖22 + ‖𝑥‖TV

where ‖ · ‖TV denotes the total variation, y are the measurements, g is a masking operator and 𝜏 expresses the
trade-off between the two terms.

Load an image and convert it to grayscale

>>> import matplotlib.image as mpimg
>>> import numpy as np
>>> try:
... im_original = mpimg.imread('tutorials/lena.png')
... except:
... im_original = mpimg.imread('doc/tutorials/lena.png')
>>> im_original = np.dot(im_original[..., :3], [0.299, 0.587, 0.144])

and generate a random masking matrix

>>> np.random.seed(14) # Reproducible results.
>>> mask = np.random.uniform(size=im_original.shape)
>>> mask = mask > 0.85

which masks 85% of the pixels. The masked image is given by

16 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

>>> g = lambda x: mask * x
>>> im_masked = g(im_original)

The prior objective to minimize is defined by

𝑓1(𝑥) = ‖𝑥‖TV

which can be expressed by the toolbox TV-norm function object, instantiated with

>>> from pyunlocbox import functions
>>> f1 = functions.norm_tv(maxit=50, dim=2)

The fidelity objective to minimize is defined by

𝑓2(𝑥) = 𝜏‖𝑔(𝑥)− 𝑦‖22

which can be expressed by the toolbox L2-norm function object, instantiated with

>>> tau = 100
>>> f2 = functions.norm_l2(y=im_masked, A=g, lambda_=tau)

Note: We set 𝜏 to a large value as we trust our measurements and want the solution to be close to them. For noisy
measurements a lower value should be considered.

The step size for optimal convergence is 1
𝛽 where 𝛽 = 2𝜏 is the Lipschitz constant of the gradient of 𝑓2 [BT09a].

The Forward-Backward splitting algorithm is instantiated with

>>> from pyunlocbox import solvers
>>> solver = solvers.forward_backward(step=0.5/tau)

and the problem solved with

>>> x0 = np.array(im_masked) # Make a copy to preserve im_masked.
>>> ret = solvers.solve([f1, f2], x0, solver, maxit=100)
Solution found after 93 iterations:

objective function f(sol) = 4.268861e+03
stopping criterion: RTOL

Let’s display the results:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure(figsize=(8, 2.5))
>>> ax1 = fig.add_subplot(1, 3, 1)
>>> _ = ax1.imshow(im_original, cmap='gray')
>>> _ = ax1.axis('off')
>>> _ = ax1.set_title('Original image')
>>> ax2 = fig.add_subplot(1, 3, 2)
>>> _ = ax2.imshow(im_masked, cmap='gray')
>>> _ = ax2.axis('off')
>>> _ = ax2.set_title('Masked image')
>>> ax3 = fig.add_subplot(1, 3, 3)
>>> _ = ax3.imshow(ret['sol'], cmap='gray')
>>> _ = ax3.axis('off')
>>> _ = ax3.set_title('Reconstructed image')

3.1. Tutorials 17

PyUNLocBoX documentation, Release 0.5.1

Original image Masked image Reconstructed image

The above figure shows a good reconstruction which is both smooth (the TV prior) and close to the measurements
(the L2 fidelity).

Image denoising (Douglas-Rachford, Total Variation, L2-norm)

This tutorial presents an image denoising problem solved by the Douglas-Rachford splitting algorithm. The
convex optimization problem, a term which expresses a prior on the smoothness of the solution constrained by
some data fidelity, is given by

min
𝑥

‖𝑥‖TV s.t. ‖𝑥− 𝑦‖2 ≤ 𝜖

where ‖ · ‖TV denotes the total variation, y are the measurements and 𝜖 expresses the noise level.

Create a white circle on a black background

>>> import numpy as np
>>> N = 650
>>> im_original = np.resize(np.linspace(-1, 1, N), (N, N))
>>> im_original = np.sqrt(im_original**2 + im_original.T**2)
>>> im_original = im_original < 0.7

and add some random Gaussian noise

>>> sigma = 0.5 # Variance of 0.25.
>>> np.random.seed(7) # Reproducible results.
>>> im_noisy = im_original + sigma * np.random.normal(size=im_original.shape)

The prior objective function to minimize is defined by

𝑓1(𝑥) = ‖𝑥‖TV

which can be expressed by the toolbox TV-norm function object, instantiated with

>>> from pyunlocbox import functions
>>> f1 = functions.norm_tv(maxit=50, dim=2)

The fidelity constraint expressed as an objective function to minimize is defined by

𝑓2(𝑥) = 𝜄𝑆(𝑥)

where 𝜄𝑆() is the indicator function of the set 𝑆 = {𝑧 ∈ R𝑛 | ‖𝑧 − 𝑦‖2 ≤ 𝜖} which is zero if 𝑧 is in the set and
infinite otherwise. This function can be expressed by the toolbox L2-ball function, instantiated with

>>> y = np.reshape(im_noisy, -1) # Reshape the 2D image as a 1D vector.
>>> epsilon = N * sigma # Variance multiplied by N^2.
>>> f = functions.proj_b2(y=y, epsilon=epsilon)
>>> f2 = functions.func()
>>> f2._eval = lambda x: 0 # Indicator functions evaluate to zero.

18 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

>>> def prox(x, step):
... return np.reshape(f.prox(np.reshape(x, -1), 0), im_noisy.shape)
>>> f2._prox = prox

Note: We defined a custom proximal operator which transforms the 2D image as a 1D vector because
pyunlocbox.functions.proj_b2 operates on the columns of x while pyunlocbox.functions.
norm_tv needs a two-dimensional array to compute the 2D TV norm.

The Douglas-Rachford splitting algorithm is instantiated with

>>> from pyunlocbox import solvers
>>> solver = solvers.douglas_rachford(step=0.1)

and the problem solved with

>>> x0 = np.array(im_noisy) # Make a copy to preserve y aka im_noisy.
>>> ret = solvers.solve([f1, f2], x0, solver)
Solution found after 25 iterations:

objective function f(sol) = 2.080376e+03
stopping criterion: RTOL

Let’s display the results:

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure(figsize=(8, 2.5))
>>> ax1 = fig.add_subplot(1, 3, 1)
>>> _ = ax1.imshow(im_original, cmap='gray')
>>> _ = ax1.axis('off')
>>> _ = ax1.set_title('Original image')
>>> ax2 = fig.add_subplot(1, 3, 2)
>>> _ = ax2.imshow(im_noisy, cmap='gray')
>>> _ = ax2.axis('off')
>>> _ = ax2.set_title('Noisy image')
>>> ax3 = fig.add_subplot(1, 3, 3)
>>> _ = ax3.imshow(ret['sol'], cmap='gray')
>>> _ = ax3.axis('off')
>>> _ = ax3.set_title('Denoised image')

Original image Noisy image Denoised image

The above figure shows a good reconstruction which is both smooth (the TV prior) and close to the measurements
(the L2 fidelity constraint).

3.1. Tutorials 19

PyUNLocBoX documentation, Release 0.5.1

Reference guide

Package overview

The toolbox is organized around two class hierarchies: the functions and the solvers. Instantiated functions
represent convex functions to optimize. Instantiated solvers represent solving algorithms. The pyunlocbox.
solvers.solve() solving function takes as parameters a solver object and some function objects to actually
solve the optimization problem. See this function’s documentation for a typical usage example.

The pyunlocbox package is divided into the following modules:

• pyunlocbox.solvers: problem solvers, implement the solvers class hierarchy and the solving function

• pyunlocbox.functions: functions to be passed to the solvers, implement the functions class hierarchy

• pyunlocbox.operators: useful operators to be passed to the functions

• pyunlocbox.acceleration: acceleration schemes to be passed to the solvers, implement the accel-
eration class hierarchy

Functions module

Function objects

Interface

class pyunlocbox.functions.func(y=0, A=None, At=None, tight=True, nu=1, tol=0.001,
maxit=200, **kwargs)

Bases: object

This class defines the function object interface.

It is intended to be a base class for standard functions which will implement the required methods. It can
also be instantiated by user code and dynamically modified for rapid testing. The instanced objects are
meant to be passed to the pyunlocbox.solvers.solve() solving function.

Parameters y : array_like, optional

Measurements. Default is 0.

A : function or ndarray, optional

The forward operator. Default is the identity, 𝐴(𝑥) = 𝑥. If A is an ndarray, it
will be converted to the operator form.

At : function or ndarray, optional

The adjoint operator. If At is an ndarray, it will be converted to the operator
form. If A is an ndarray, default is the transpose of A. If A is a function, default
is A, 𝐴𝑡(𝑥) = 𝐴(𝑥).

tight : bool, optional

True if A is a tight frame (semi-orthogonal linear transform), False otherwise.
Default is True.

nu : float, optional

Bound on the norm of the operator A, i.e. ‖𝐴(𝑥)‖2 ≤ 𝜈‖𝑥‖2. Default is 1.

tol : float, optional

The tolerance stopping criterion. The exact definition depends on the function ob-
ject, please see the documentation of the considered function. Default is 1e-3.

maxit : int, optional

20 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

The maximum number of iterations. Default is 200.

Examples

Let’s define a parabola as an example of the manual implementation of a function object :

>>> import pyunlocbox
>>> f = pyunlocbox.functions.func()
>>> f._eval = lambda x: x**2
>>> f._grad = lambda x: 2*x
>>> x = [1, 2, 3, 4]
>>> f.eval(x)
array([1, 4, 9, 16])
>>> f.grad(x)
array([2, 4, 6, 8])
>>> f.cap(x)
['EVAL', 'GRAD']

cap(x)
Test the capabilities of the function object.

Parameters x : array_like

The evaluation point. Not really needed, but this function calls the methods of the
object to test if they can properly execute without raising an exception. Therefore
it needs some evaluation point with a consistent size.

Returns cap : list of string

A list of capabilities (‘EVAL’, ‘GRAD’, ‘PROX’).

eval(x)
Function evaluation.

Parameters x : array_like

The evaluation point. If x is a matrix, the function gets evaluated for each column,
as if it was a set of independent problems. Some functions, like the nuclear norm,
are only defined on matrices.

Returns z : float

The objective function evaluated at x. If x is a matrix, the sum of the objectives is
returned.

Notes

This method is required by the pyunlocbox.solvers.solve() solving function to evaluate the
objective function. Each function class should therefore define it.

grad(x)
Function gradient.

Parameters x : array_like

The evaluation point. If x is a matrix, the function gets evaluated for each column,
as if it was a set of independent problems. Some functions, like the nuclear norm,
are only defined on matrices.

Returns z : ndarray

The objective function gradient evaluated for each column of x.

3.2. Reference guide 21

PyUNLocBoX documentation, Release 0.5.1

Notes

This method is required by some solvers.

prox(x, T)
Function proximal operator.

Parameters x : array_like

The evaluation point. If x is a matrix, the function gets evaluated for each column,
as if it was a set of independent problems. Some functions, like the nuclear norm,
are only defined on matrices.

T : float

The regularization parameter.

Returns z : ndarray

The proximal operator evaluated for each column of x.

Notes

The proximal operator is defined by prox𝛾𝑓 (𝑥) = argmin𝑧
1
2‖𝑥− 𝑧‖22 + 𝛾𝑓(𝑧)

This method is required by some solvers.

When the map A in the function construction is a tight frame (semi-orthogonal linear transformation),
we can use property (x) of Table 10.1 in [CP11] to compute the proximal operator of the composi-
tion of A with the base function. Whenever this is not the case, we have to resort to some iterative
procedure, which may be very inefficient.

Dummy function

class pyunlocbox.functions.dummy(**kwargs)
Bases: pyunlocbox.functions.func

Dummy function object.

This can be used as a second function object when there is only one function to minimize. It always evaluates
as 0.

Examples

>>> import pyunlocbox
>>> f = pyunlocbox.functions.dummy()
>>> x = [1, 2, 3, 4]
>>> f.eval(x)
0
>>> f.prox(x, 1)
array([1, 2, 3, 4])
>>> f.grad(x)
array([0., 0., 0., 0.])

Norm operators class hierarchy

22 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

Base class

class pyunlocbox.functions.norm(lambda_=1, w=1, **kwargs)
Bases: pyunlocbox.functions.func

Base class which defines the attributes of the norm objects.

See generic attributes descriptions of the pyunlocbox.functions.func base class.

Parameters lambda_ : float, optional

Regularization parameter 𝜆. Default is 1.

w : array_like, optional

Weights for a weighted norm. Default is 1.

L1-norm

class pyunlocbox.functions.norm_l1(**kwargs)
Bases: pyunlocbox.functions.norm

L1-norm function object.

See generic attributes descriptions of the pyunlocbox.functions.norm base class. Note that the
constructor takes keyword-only parameters.

Notes

•The L1-norm of the vector x is given by 𝜆‖𝑤 · (𝐴(𝑥)− 𝑦)‖1.

•The L1-norm proximal operator evaluated at x is given by argmin𝑧
1
2‖𝑥− 𝑧‖22 + 𝛾‖𝑤 · (𝐴(𝑧)− 𝑦)‖1

where 𝛾 = 𝜆 · 𝑇 . This is simply a soft thresholding.

Examples

>>> import pyunlocbox
>>> f = pyunlocbox.functions.norm_l1()
>>> f.eval([1, 2, 3, 4])
10
>>> f.prox([1, 2, 3, 4], 1)
array([0, 1, 2, 3])

L2-norm

class pyunlocbox.functions.norm_l2(**kwargs)
Bases: pyunlocbox.functions.norm

L2-norm function object.

See generic attributes descriptions of the pyunlocbox.functions.norm base class. Note that the
constructor takes keyword-only parameters.

Notes

•The squared L2-norm of the vector x is given by 𝜆‖𝑤 · (𝐴(𝑥)− 𝑦)‖22.

•The squared L2-norm proximal operator evaluated at x is given by argmin𝑧
1
2‖𝑥−𝑧‖22+𝛾‖𝑤 ·(𝐴(𝑧)−

𝑦)‖22 where 𝛾 = 𝜆 · 𝑇 .

3.2. Reference guide 23

PyUNLocBoX documentation, Release 0.5.1

•The squared L2-norm gradient evaluated at x is given by 2𝜆 ·𝐴𝑡(𝑤 · (𝐴(𝑥)− 𝑦)).

Examples

>>> import pyunlocbox
>>> f = pyunlocbox.functions.norm_l2()
>>> x = [1, 2, 3, 4]
>>> f.eval(x)
30
>>> f.prox(x, 1)
array([0.33333333, 0.66666667, 1. , 1.33333333])
>>> f.grad(x)
array([2, 4, 6, 8])

Nuclear-norm

class pyunlocbox.functions.norm_nuclear(**kwargs)
Bases: pyunlocbox.functions.norm

Nuclear-norm function object.

See generic attributes descriptions of the pyunlocbox.functions.norm base class. Note that the
constructor takes keyword-only parameters.

Notes

•The nuclear-norm of the matrix x is given by 𝜆‖𝑥‖* = 𝜆 trace(
√
𝑥*𝑥) = 𝜆

∑︀𝑁
𝑖=1 |𝑒𝑖| where e_i are

the eigenvalues of x.

•The nuclear-norm proximal operator evaluated at x is given by argmin𝑧
1
2‖𝑥 − 𝑧‖22 + 𝛾‖𝑥‖* where

𝛾 = 𝜆 · 𝑇 , which is a soft-thresholding of the eigenvalues.

Examples

>>> import pyunlocbox
>>> f = pyunlocbox.functions.norm_nuclear()
>>> f.eval([[1, 2],[2, 3]])
4.47213595...
>>> f.prox([[1, 2],[2, 3]], 1)
array([[0.89442719, 1.4472136],

[1.4472136 , 2.34164079]])

TV-norm

class pyunlocbox.functions.norm_tv(dim=2, verbosity=’LOW’, **kwargs)
Bases: pyunlocbox.functions.norm

TV Norm function object.

See generic attributes descriptions of the pyunlocbox.functions.norm base class. Note that the
constructor takes keyword-only parameters.

24 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

Notes

TODO

See [BT09b] for details about the algorithm.

Examples

>>> import pyunlocbox
>>> import numpy as np
>>> f = pyunlocbox.functions.norm_tv()
>>> x = np.arange(0, 16)
>>> x = x.reshape(4, 4)
>>> f.eval(x)

norm_tv evaluation: 5.210795e+01
52.10795063...

Projection operators class hierarchy

Base class

class pyunlocbox.functions.proj(epsilon=1, method=’FISTA’, **kwargs)
Bases: pyunlocbox.functions.func

Base class which defines the attributes of the proj objects.

See generic attributes descriptions of the pyunlocbox.functions.func base class.

Parameters epsilon : float, optional

The radius of the ball. Default is 1.

method : {‘FISTA’, ‘ISTA’}, optional

The method used to solve the problem. It can be ‘FISTA’ or ‘ISTA’. Default is
‘FISTA’.

Notes

•All indicator functions (projections) evaluate to zero by definition.

L2-ball

class pyunlocbox.functions.proj_b2(**kwargs)
Bases: pyunlocbox.functions.proj

L2-ball function object.

This function is the indicator function 𝑖𝑆(𝑧) of the set S which is zero if z is in the set and infinite otherwise.
The set S is defined by

{︀
𝑧 ∈ R𝑁 | ‖𝐴(𝑧)− 𝑦‖2 ≤ 𝜖

}︀
.

See generic attributes descriptions of the pyunlocbox.functions.proj base class. Note that the
constructor takes keyword-only parameters.

3.2. Reference guide 25

PyUNLocBoX documentation, Release 0.5.1

Notes

•The tol parameter is defined as the tolerance for the projection on the L2-ball. The algorithm stops if
𝜖

1−𝑡𝑜𝑙 ≤ ‖𝑦 −𝐴(𝑧)‖2 ≤ 𝜖
1+𝑡𝑜𝑙 .

•The evaluation of this function is zero.

•The L2-ball proximal operator evaluated at x is given by argmin𝑧
1
2‖𝑥 − 𝑧‖22 + 𝑖𝑆(𝑧) which has an

identical solution as argmin𝑧 ‖𝑥− 𝑧‖22 such that ‖𝐴(𝑧)−𝑦‖2 ≤ 𝜖. It is thus a projection of the vector
x onto an L2-ball of diameter epsilon.

Examples

>>> import pyunlocbox
>>> f = pyunlocbox.functions.proj_b2(y=[1, 1])
>>> x = [3, 3]
>>> f.eval(x)
0
>>> f.prox(x, 0)
array([1.70710678, 1.70710678])

This module implements function objects which are then passed to solvers. The func base class defines the
interface whereas specialised classes who inherit from it implement the methods. These classes include :

• dummy: A dummy function object which returns 0 for the _eval(), _prox() and _grad() methods.

• norm: Norm operators base class.

– norm_l1: L1-norm who implements the _eval() and _prox() methods.

– norm_l2: L2-norm who implements the _eval(), _prox() and _grad() methods.

– norm_nuclear: nuclear-norm who implements the _eval() and _prox() methods.

– norm_tv: TV-norm who implements the _eval() and _prox() methods.

• proj: Projection operators base class.

– proj_b2: Projection on the L2-ball who implements the _eval() and _prox() methods.

functions.dummy

functions.func functions.norm

functions.proj

functions.norm_l1

functions.norm_l2

functions.norm_nuclear

functions.norm_tv

functions.proj_b2

26 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

Solvers module

Solving function

pyunlocbox.solvers.solve(functions, x0, solver=None, atol=None, dtol=None, rtol=0.001,
xtol=None, maxit=200, verbosity=’LOW’)

Solve an optimization problem whose objective function is the sum of some convex functions.

This function minimizes the objective function 𝑓(𝑥) =
𝑘=𝐾∑︀
𝑘=0

𝑓𝑘(𝑥), i.e. solves argmin𝑥 𝑓(𝑥) for 𝑥 ∈ R𝑛×𝑁

where 𝑛 is the dimensionality of the data and 𝑁 the number of independent problems. It returns a dictionary
with the found solution and some informations about the algorithm execution.

Parameters functions : list of objects

A list of convex functions to minimize. These are objects who must implement
the pyunlocbox.functions.func.eval() method. The pyunlocbox.
functions.func.grad() and / or pyunlocbox.functions.func.
prox() methods are required by some solvers. Note also that some solvers can
only handle two convex functions while others may handle more. Please refer to
the documentation of the considered solver.

x0 : array_like

Starting point of the algorithm, 𝑥0 ∈ R𝑛×𝑁 . Note that if you pass a numpy array
it will be modified in place during execution to save memory. It will then contain
the solution. Be careful to pass data of the type (int, float32, float64) you want your
computations to use.

solver : solver class instance, optional

The solver algorithm. It is an object who must inherit from pyunlocbox.
solvers.solver and implement the _pre(), _algo() and _post() meth-
ods. If no solver object are provided, a standard one will be chosen given the num-
ber of convex function objects and their implemented methods.

atol : float, optional

The absolute tolerance stopping criterion. The algorithm stops when 𝑓(𝑥𝑡) < 𝑎𝑡𝑜𝑙
where 𝑓(𝑥𝑡) is the objective function at iteration 𝑡. Default is None.

dtol : float, optional

Stop when the objective function is stable enough, i.e. when
⃒⃒
𝑓(𝑥𝑡)− 𝑓(𝑥𝑡−1)

⃒⃒
<

𝑑𝑡𝑜𝑙. Default is None.

rtol : float, optional

The relative tolerance stopping criterion. The algorithm stops when⃒⃒⃒
𝑓(𝑥𝑡)−𝑓(𝑥𝑡−1)

𝑓(𝑥𝑡)

⃒⃒⃒
< 𝑟𝑡𝑜𝑙. Default is 10−3.

xtol : float, optional

Stop when the variable is stable enough, i.e. when ‖𝑥𝑡−𝑥𝑡−1‖2√
𝑛𝑁

< 𝑥𝑡𝑜𝑙. Note that
additional memory will be used to store 𝑥𝑡−1. Default is None.

maxit : int, optional

The maximum number of iterations. Default is 200.

verbosity : {‘NONE’, ‘LOW’, ‘HIGH’, ‘ALL’}, optional

The log level : 'NONE' for no log, 'LOW' for resume at convergence, 'HIGH'
for info at all solving steps, 'ALL' for all possible outputs, including at each steps
of the proximal operators computation. Default is 'LOW'.

Returns sol : ndarray

3.2. Reference guide 27

PyUNLocBoX documentation, Release 0.5.1

The problem solution.

solver : str

The used solver.

crit : {‘ATOL’, ‘DTOL’, ‘RTOL’, ‘XTOL’, ‘MAXIT’}

The used stopping criterion. See above for definitions.

niter : int

The number of iterations.

time : float

The execution time in seconds.

objective : ndarray

The successive evaluations of the objective function at each iteration.

Examples

>>> import pyunlocbox
>>> import numpy as np

Define a problem:

>>> y = [4, 5, 6, 7]
>>> f = pyunlocbox.functions.norm_l2(y=y)

Solve it:

>>> x0 = np.zeros(len(y))
>>> ret = pyunlocbox.solvers.solve([f], x0, atol=1e-2, verbosity='ALL')
INFO: Dummy objective function added.
INFO: Selected solver: forward_backward

norm_l2 evaluation: 1.260000e+02
dummy evaluation: 0.000000e+00

INFO: Forward-backward method
Iteration 1 of forward_backward:

norm_l2 evaluation: 1.400000e+01
dummy evaluation: 0.000000e+00
objective = 1.40e+01

Iteration 2 of forward_backward:
norm_l2 evaluation: 2.963739e-01
dummy evaluation: 0.000000e+00
objective = 2.96e-01

Iteration 3 of forward_backward:
norm_l2 evaluation: 7.902529e-02
dummy evaluation: 0.000000e+00
objective = 7.90e-02

Iteration 4 of forward_backward:
norm_l2 evaluation: 5.752265e-02
dummy evaluation: 0.000000e+00
objective = 5.75e-02

Iteration 5 of forward_backward:
norm_l2 evaluation: 5.142032e-03
dummy evaluation: 0.000000e+00
objective = 5.14e-03

Solution found after 5 iterations:
objective function f(sol) = 5.142032e-03
stopping criterion: ATOL

28 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

Verify the stopping criterion (should be smaller than atol=1e-2):

>>> np.linalg.norm(ret['sol'] - y)**2
0.00514203...

Show the solution (should be close to y w.r.t. the L2-norm measure):

>>> ret['sol']
array([4.02555301, 5.03194126, 6.03832952, 7.04471777])

Show the used solver:

>>> ret['solver']
'forward_backward'

Show some information about the convergence:

>>> ret['crit']
'ATOL'
>>> ret['niter']
5
>>> ret['time']
0.0012578964233398438
>>> ret['objective']
[[126.0, 0], [13.99999999..., 0], [0.29637392..., 0], [0.07902528..., 0],
[0.05752265..., 0], [0.00514203..., 0]]

Solver class hierarchy

Solver object interface

class pyunlocbox.solvers.solver(step=1.0, accel=None)
Bases: object

Defines the solver object interface.

This class defines the interface of a solver object intended to be passed to the pyunlocbox.solvers.
solve() solving function. It is intended to be a base class for standard solvers which will implement the
required methods. It can also be instantiated by user code and dynamically modified for rapid testing. This
class also defines the generic attributes of all solver objects.

Parameters step : float

The gradient-descent step-size. This parameter is bounded by 0 and 2
𝛽 where 𝛽 is

the Lipschitz constant of the gradient of the smooth function (or a sum of smooth
functions). Default is 1.

accel : pyunlocbox.acceleration.accel

User-defined object used to adaptively change the current step size and solution
while the algorithm is running. Default is a dummy object that returns unchanged
values.

algo(objective, niter)
Call the solver iterative algorithm and the provided acceleration scheme. See parameters documenta-
tion in pyunlocbox.solvers.solve()

Notes

The method self.accel.update_sol() is called before self._algo() because the acceler-
ation schemes usually involves some sort of averaging of previous solutions, which can add some un-

3.2. Reference guide 29

PyUNLocBoX documentation, Release 0.5.1

wanted artifacts on the output solution. With this ordering, we guarantee that the output of solver.algo
is not corrupted by the acceleration scheme.

Similarly, the method self.accel.update_step() is called after self._algo() to allow
the step update procedure to act directly on the solution output by the underlying algorithm, and not
on the intermediate solution output by the acceleration scheme in self.accel.update_sol().

post()
Solver-specific post-processing. Mainly used to delete references added during initialization so that the
garbage collector can free the memory. See parameters documentation in pyunlocbox.solvers.
solve().

pre(functions, x0)
Solver-specific pre-processing. See parameters documentation in pyunlocbox.solvers.
solve() documentation.

Notes

When preprocessing the functions, the solver should split them into two lists: * self.smooth_funs, for
functions involved in gradient steps. * self.non_smooth_funs, for functions involved proximal steps.
This way, any method that takes in the solver as argument, such as the methods in pyunlocbox.
acceleration.accel, can have some context as to how the solver is using the functions.

Gradient descent algorithm

class pyunlocbox.solvers.gradient_descent(**kwargs)
Bases: pyunlocbox.solvers.solver

Gradient descent algorithm.

This algorithm solves optimization problems composed of the sum of any number of smooth functions.

See generic attributes descriptions of the pyunlocbox.solvers.solver base class.

Notes

This algorithm requires each function implement the pyunlocbox.functions.func.grad()
method.

See pyunlocbox.acceleration.regularized_nonlinear for a very efficient acceleration
scheme for this method.

Examples

>>> from pyunlocbox import functions, solvers
>>> import numpy as np
>>> dim = 25;
>>> np.random.seed(0)
>>> xstar = np.random.rand(dim) # True solution
>>> x0 = np.random.rand(dim)
>>> x0 = xstar + 5.*(x0 - xstar) / np.linalg.norm(x0 - xstar)
>>> A = np.random.rand(dim, dim)
>>> step = 1/np.linalg.norm(np.dot(A.T, A))
>>> f = functions.norm_l2(lambda_=0.5, A=A, y=np.dot(A, xstar))
>>> fd = functions.dummy()
>>> solver = solvers.gradient_descent(step=step)
>>> params = {'rtol':0, 'maxit':14000, 'verbosity':'NONE'}
>>> ret = solvers.solve([f, fd], x0, solver, **params)

30 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

>>> pctdiff = 100*np.sum((xstar - ret['sol'])**2)/np.sum(xstar**2)
>>> print('Difference: {0:.1f}%'.format(pctdiff))
Difference: 1.3%

Forward-backward proximal splitting algorithm

class pyunlocbox.solvers.forward_backward(accel=<pyunlocbox.acceleration.fista object>,
**kwargs)

Bases: pyunlocbox.solvers.solver

Forward-backward proximal splitting algorithm.

This algorithm solves convex optimization problems composed of the sum of a smooth and a non-smooth
function.

See generic attributes descriptions of the pyunlocbox.solvers.solver base class.

Parameters accel : pyunlocbox.acceleration.accel

Acceleration scheme to use. Default is pyunlocbox.acceleration.
fista(), which corresponds to the ‘FISTA’ solver. Passing pyunlocbox.
acceleration.dummy() instead results in the ISTA solver. Note that while
FISTA is much more time-efficient, it is less memory-efficient.

Notes

This algorithm requires one function to implement the pyunlocbox.functions.func.prox()
method and the other one to implement the pyunlocbox.functions.func.grad() method.

See [BT09a] for details about the algorithm.

Examples

>>> from pyunlocbox import functions, solvers
>>> import numpy as np
>>> y = [4, 5, 6, 7]
>>> x0 = np.zeros(len(y))
>>> f1 = functions.norm_l2(y=y)
>>> f2 = functions.dummy()
>>> solver = solvers.forward_backward(step=0.5)
>>> ret = solvers.solve([f1, f2], x0, solver, atol=1e-5)
Solution found after 15 iterations:

objective function f(sol) = 4.957288e-07
stopping criterion: ATOL

>>> ret['sol']
array([4.0002509 , 5.00031362, 6.00037635, 7.00043907])

Douglas-Rachford proximal splitting algorithm

class pyunlocbox.solvers.douglas_rachford(lambda_=1, *args, **kwargs)
Bases: pyunlocbox.solvers.solver

Douglas-Rachford proximal splitting algorithm.

This algorithm solves convex optimization problems composed of the sum of two non-smooth (or smooth)
functions.

See generic attributes descriptions of the pyunlocbox.solvers.solver base class.

3.2. Reference guide 31

PyUNLocBoX documentation, Release 0.5.1

Parameters lambda_ : float, optional

The update term weight. It should be between 0 and 1. Default is 1.

Notes

This algorithm requires the two functions to implement the pyunlocbox.functions.func.prox()
method.

See [CP07] for details about the algorithm.

Examples

>>> from pyunlocbox import functions, solvers
>>> import numpy as np
>>> y = [4, 5, 6, 7]
>>> x0 = np.zeros(len(y))
>>> f1 = functions.norm_l2(y=y)
>>> f2 = functions.dummy()
>>> solver = solvers.douglas_rachford(lambda_=1, step=1)
>>> ret = solvers.solve([f1, f2], x0, solver, atol=1e-5)
Solution found after 8 iterations:

objective function f(sol) = 2.927052e-06
stopping criterion: ATOL

>>> ret['sol']
array([3.99939034, 4.99923792, 5.99908551, 6.99893309])

Generalized forward-backward proximal splitting algorithm

class pyunlocbox.solvers.generalized_forward_backward(lambda_=1, *args,
**kwargs)

Bases: pyunlocbox.solvers.solver

Generalized forward-backward proximal splitting algorithm.

This algorithm solves convex optimization problems composed of the sum of any number of non-smooth
(or smooth) functions.

See generic attributes descriptions of the pyunlocbox.solvers.solver base class.

Parameters lambda_ : float, optional

A relaxation parameter bounded by 0 and 1. Default is 1.

Notes

This algorithm requires each function to either implement the pyunlocbox.functions.func.
prox() method or the pyunlocbox.functions.func.grad() method.

See [RFP13] for details about the algorithm.

Examples

>>> from pyunlocbox import functions, solvers
>>> import numpy as np
>>> y = [0.01, 0.2, 8, 0.3, 0 , 0.03, 7]
>>> x0 = np.zeros(len(y))

32 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

>>> f1 = functions.norm_l2(y=y)
>>> f2 = functions.norm_l1()
>>> solver = solvers.generalized_forward_backward(lambda_=1, step=0.5)
>>> ret = solvers.solve([f1, f2], x0, solver)
Solution found after 2 iterations:

objective function f(sol) = 1.463100e+01
stopping criterion: RTOL

>>> ret['sol']
array([0. , 0. , 7.5, 0. , 0. , 0. , 6.5])

Primal-dual algorithms

class pyunlocbox.solvers.primal_dual(L=None, Lt=None, d0=None, *args, **kwargs)
Bases: pyunlocbox.solvers.solver

Parent class of all primal-dual algorithms.

See generic attributes descriptions of the pyunlocbox.solvers.solver base class.

Parameters L : function or ndarray, optional

The transformation L that maps from the primal variable space to the dual variable
space. Default is the identity, 𝐿(𝑥) = 𝑥. If L is an ndarray, it will be converted
to the operator form.

Lt : function or ndarray, optional

The adjoint operator. If Lt is an ndarray, it will be converted to the operator form.
If L is an ndarray, default is the transpose of L. If L is a function, default is L,
𝐿𝑡(𝑥) = 𝐿(𝑥).

d0: ndarray, optional

Initialization of the dual variable.

Monotone+Lipschitz forward-backward-forward algorithm

class pyunlocbox.solvers.mlfbf(L=None, Lt=None, d0=None, *args, **kwargs)
Bases: pyunlocbox.solvers.primal_dual

Monotone + Lipschitz Forward-Backward-Forward primal-dual algorithm.

This algorithm solves convex optimization problems with objective of the form 𝑓(𝑥)+𝑔(𝐿𝑥)+ℎ(𝑥), where
𝑓 and 𝑔 are proper, convex, lower-semicontinuous functions with easy-to-compute proximity operators, and
ℎ has Lipschitz-continuous gradient with constant 𝛽.

See generic attributes descriptions of the pyunlocbox.solvers.primal_dual base class.

Notes

The order of the functions matters: set 𝑓 first on the list, 𝑔 second, and ℎ third.

This algorithm requires the first two functions to implement the pyunlocbox.functions.func.
prox() method, and the third function to implement the pyunlocbox.functions.func.grad()
method.

The step-size should be in the interval
]︁
0, 1

𝛽+‖𝐿‖2

[︁
.

See [KP15], Algorithm 6, for details.

3.2. Reference guide 33

PyUNLocBoX documentation, Release 0.5.1

Examples

>>> from pyunlocbox import functions, solvers
>>> import numpy as np
>>> y = np.array([294, 390, 361])
>>> L = np.array([[5, 9, 3], [7, 8, 5], [4, 4, 9], [0, 1, 7]])
>>> x0 = np.zeros(len(y))
>>> f = functions.dummy()
>>> f._prox = lambda x, T: np.maximum(np.zeros(len(x)), x)
>>> g = functions.norm_l2(lambda_=0.5)
>>> h = functions.norm_l2(y=y, lambda_=0.5)
>>> max_step = 1/(1 + np.linalg.norm(L, 2))
>>> solver = solvers.mlfbf(L=L, step=max_step/2.)
>>> ret = solvers.solve([f, g, h], x0, solver, maxit=1000, rtol=0)
Solution found after 1000 iterations:

objective function f(sol) = 1.833865e+05
stopping criterion: MAXIT

>>> ret['sol']
array([1., 1., 1.])

Projection-based primal-dual algorithm

class pyunlocbox.solvers.projection_based(lambda_=1.0, *args, **kwargs)
Bases: pyunlocbox.solvers.primal_dual

Projection-based primal-dual algorithm.

This algorithm solves convex optimization problems with objective of the form 𝑓(𝑥)+ 𝑔(𝐿𝑥), where 𝑓 and
𝑔 are proper, convex, lower-semicontinuous functions with easy-to-compute proximity operators.

See generic attributes descriptions of the pyunlocbox.solvers.primal_dual base class.

Parameters lambda_ : float, optional

The update term weight. It should be between 0 and 2. Default is 1.

Notes

The order of the functions matters: set 𝑓 first on the list, and 𝑔 second.

This algorithm requires the two functions to implement the pyunlocbox.functions.func.prox()
method.

The step-size should be in the interval]0,∞[.

See [KP15], Algorithm 7, for details.

Examples

>>> from pyunlocbox import functions, solvers
>>> import numpy as np
>>> y = np.array([294, 390, 361])
>>> L = np.array([[5, 9, 3], [7, 8, 5], [4, 4, 9], [0, 1, 7]])
>>> x0 = np.array([500, 1000, -400])
>>> f = functions.norm_l1(y=y)
>>> g = functions.norm_l1()
>>> solver = solvers.projection_based(L=L, step=1.)
>>> ret = solvers.solve([f, g], x0, solver, maxit=1000, rtol=None, xtol=.1)
Solution found after 996 iterations:

objective function f(sol) = 1.045000e+03

34 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

stopping criterion: XTOL
>>> ret['sol']
array([0, 0, 0])

This module implements solver objects who minimize an objective function. Call solve() to solve your convex
optimization problem using your instantiated solver and functions objects. The solver base class defines the
interface of all solver objects. The specialized solver objects inherit from it and implement the class methods. The
following solvers are included :

• gradient_descent: Gradient descent algorithm.

• forward_backward: Forward-backward proximal splitting algorithm.

• douglas_rachford: Douglas-Rachford proximal splitting algorithm.

• generalized_forward_backward: Generalized Forward-Backward.

• primal_dual: Primal-dual algorithms.

– mlfbf: Monotone+Lipschitz Forward-Backward-Forward primal-dual algorithm.

– projection_based: Projection-based primal-dual algorithm.

solvers.douglas_rachford

solvers.solver

solvers.forward_backward

solvers.generalized_forward_backward

solvers.gradient_descent

solvers.primal_dual

solvers.mlfbf

solvers.projection_based

Acceleration module

Acceleration class hierarchy

Acceleration scheme object interface

class pyunlocbox.acceleration.accel
Bases: object

Defines the acceleration scheme object interface.

This class defines the interface of an acceleration scheme object intended to be passed to a solver inherit-
ing from pyunlocbox.solvers.solver. It is intended to be a base class for standard acceleration
schemes which will implement the required methods. It can also be instantiated by user code and dynam-
ically modified for rapid testing. This class also defines the generic attributes of all acceleration scheme
objects.

post()
Post-processing specific to the acceleration scheme.

3.2. Reference guide 35

PyUNLocBoX documentation, Release 0.5.1

Mainly used to delete references added during initialization so that the garbage collector can free the
memory. Gets called when pyunlocbox.solvers.solve() finishes running.

pre(functions, x0)
Pre-processing specific to the acceleration scheme.

Gets called when pyunlocbox.solvers.solve() starts running.

update_sol(solver, objective, niter)
Update the solution point for the next iteration.

Parameters solver : pyunlocbox.solvers.solver

Solver on which to act.

objective : list of floats

List of evaluations of the objective function since the beginning of the iterative
process.

niter : int

Current iteration number.

Returns array_like

Updated solution point.

update_step(solver, objective, niter)
Update the step size for the next iteration.

Parameters solver : pyunlocbox.solvers.solver

Solver on which to act.

objective : list of floats

List of evaluations of the objective function since the beginning of the iterative
process.

niter : int

Current iteration number.

Returns float

Updated step size.

Dummy acceleration scheme

class pyunlocbox.acceleration.dummy
Bases: pyunlocbox.acceleration.accel

Dummy acceleration scheme.

Used by default in most of the solvers. It simply returns unaltered the step size and solution point it receives.

Backtracking from quadratic approximation

class pyunlocbox.acceleration.backtracking(eta=0.5, **kwargs)
Bases: pyunlocbox.acceleration.dummy

Backtracking based on a local quadratic approximation of the the smooth part of the objective.

Parameters eta : float

A number between 0 and 1 representing the ratio of the geometric sequence formed
by successive step sizes. In other words, it establishes the relation step_new = eta
* step_old. Default is 0.5.

36 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

Notes

This is the backtracking strategy used in the original FISTA paper, [BT09a].

Examples

>>> from pyunlocbox import functions, solvers, acceleration
>>> import numpy as np
>>> y = [4, 5, 6, 7]
>>> x0 = np.zeros(len(y))
>>> f1 = functions.norm_l1(y=y, lambda_=1.0)
>>> f2 = functions.norm_l2(y=y, lambda_=0.8)
>>> accel = acceleration.backtracking()
>>> solver = solvers.forward_backward(accel=accel, step=10)
>>> ret = solvers.solve([f1, f2], x0, solver, atol=1e-32, rtol=None)
Solution found after 4 iterations:

objective function f(sol) = 0.000000e+00
stopping criterion: ATOL

>>> ret['sol']
array([4., 5., 6., 7.])

FISTA acceleration scheme

class pyunlocbox.acceleration.fista(**kwargs)
Bases: pyunlocbox.acceleration.dummy

Acceleration scheme for forward-backward solvers.

Notes

This is the acceleration scheme proposed in the original FISTA paper, [BT09a].

Examples

>>> from pyunlocbox import functions, solvers, acceleration
>>> import numpy as np
>>> y = [4, 5, 6, 7]
>>> x0 = np.zeros(len(y))
>>> f1 = functions.norm_l2(y=y)
>>> f2 = functions.dummy()
>>> accel=acceleration.fista()
>>> solver = solvers.forward_backward(accel=accel, step=0.5)
>>> ret = solvers.solve([f1, f2], x0, solver, atol=1e-5)
Solution found after 15 iterations:

objective function f(sol) = 4.957288e-07
stopping criterion: ATOL

>>> ret['sol']
array([4.0002509 , 5.00031362, 6.00037635, 7.00043907])

FISTA acceleration scheme with backtracking

class pyunlocbox.acceleration.fista_backtracking(eta=0.5, **kwargs)
Bases: pyunlocbox.acceleration.backtracking, pyunlocbox.acceleration.fista

Acceleration scheme with backtracking for forward-backward solvers.

3.2. Reference guide 37

PyUNLocBoX documentation, Release 0.5.1

Notes

This is the acceleration scheme and backtracking strategy proposed in the original FISTA paper, [BT09a].

Examples

>>> from pyunlocbox import functions, solvers, acceleration
>>> import numpy as np
>>> y = [4, 5, 6, 7]
>>> x0 = np.zeros(len(y))
>>> f1 = functions.norm_l2(y=y)
>>> f2 = functions.dummy()
>>> accel=acceleration.fista_backtracking()
>>> solver = solvers.forward_backward(accel=accel, step=0.5)
>>> ret = solvers.solve([f1, f2], x0, solver, atol=1e-5)
Solution found after 15 iterations:

objective function f(sol) = 4.957288e-07
stopping criterion: ATOL

>>> ret['sol']
array([4.0002509 , 5.00031362, 6.00037635, 7.00043907])

Regularized Nonlinear Acceleration (RNA)

class pyunlocbox.acceleration.regularized_nonlinear(k=10, lambda_=1e-06,
adaptive=True, doline-
search=True, forcede-
crease=True, **kwargs)

Bases: pyunlocbox.acceleration.dummy

Regularized nonlinear acceleration (RNA) for gradient descent.

Parameters k : int, optional

Number of points to keep in the buffer for computing the extrapolation. (Default is
10.)

lambda_ : float or list of floats, optional

Regularization parameter in the acceleration scheme. The user can pass a list of
candidates, and the acceleration algorithm will pick the one that provides the best
extrapolation. (Default is 1e-6.)

adaptive : boolean, optional

If adaptive = True and the user has not provided a list of regularization parameters,
the acceleration algorithm will assemble a grid of possible regularization parame-
ters based on the SVD of the Gram matrix of vectors of differences in the extrapo-
lation buffer. If adaptive = False, the algorithm will simply try to use the value(s)
given in lambda_. (Default is True.)

dolinesearch : boolean, optional

If dolinesearch = True, the acceleration scheme will try to return a point in the line
segment between the current extrapolation and the previous one that provides a de-
crease in the value of the objective function. If dolinesearch = False, the algorithm
simply returns the current extrapolation. (Default is True.)

forcedecrease : boolean, optional

If forcedecrese = True and we obtain a bad extrapolation, the algorithm returns the
unchanged solution produced by the solver. If forcedecrease = False, the algorithm
returns the new extrapolation no matter what. (Default is True.)

38 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

Notes

This is the acceleration scheme proposed in [SdB16].

See also Damien Scieur’s repository for the Matlab version that inspired this implementation.

Examples

>>> from pyunlocbox import functions, solvers, acceleration
>>> import numpy as np
>>> dim = 25;
>>> np.random.seed(0)
>>> xstar = np.random.rand(dim) # True solution
>>> x0 = np.random.rand(dim)
>>> x0 = xstar + 5.*(x0 - xstar) / np.linalg.norm(x0 - xstar)
>>> A = np.random.rand(dim, dim)
>>> step = 1/np.linalg.norm(np.dot(A.T, A))
>>> f = functions.norm_l2(lambda_=0.5, A=A, y=np.dot(A, xstar))
>>> fd = functions.dummy()
>>> accel = acceleration.regularized_nonlinear(k=5)
>>> solver = solvers.gradient_descent(step=step, accel=accel)
>>> params = {'rtol':0, 'maxit':200, 'verbosity':'NONE'}
>>> ret = solvers.solve([f, fd], x0, solver, **params)
>>> pctdiff = 100*np.sum((xstar - ret['sol'])**2)/np.sum(xstar**2)
>>> print('Difference: {0:.1f}%'.format(pctdiff))
Difference: 1.3%

lambda_

This module implements acceleration schemes for use with the pyunlocbox.solvers. Pass a given acceler-
ation object as an argument to your chosen solver during its initialization so that the solver can use it. The base
class accel defines the interface of all acceleration objects. The specialized acceleration objects inherit from it
and implement the class methods. The following acceleration schemes are included:

• dummy: Dummy acceleration scheme. It does nothing.

• backtracking: Backtracking line search.

• fista: FISTA acceleration scheme.

• fista_backtracking: FISTA with backtracking.

• regularized_nonlinear: Regularized nonlinear acceleration.

acceleration.accel acceleration.dummy

acceleration.backtracking

acceleration.fista_backtracking

acceleration.fista

acceleration.regularized_nonlinear

Operators module

Gradient Operators

pyunlocbox.operators.grad(x, dim=2, **kwargs)
Returns the gradient of the array

3.2. Reference guide 39

https://github.com/windows7lover/RegularizedNonlinearAcceleration

PyUNLocBoX documentation, Release 0.5.1

Parameters dim : int

Dimension of the grad

wx : int

wy : int

wz : int

wt : int

Weights to apply on each axis

Returns dx, dy, dz, dt : ndarrays

Gradients following each axes, only the necessary ones are returned

Examples

>>> import pyunlocbox
>>> import numpy as np
>>> x = np.arange(16).reshape(4, 4)
>>> dx, dy = pyunlocbox.operators.grad(x)

Divergence Operators

pyunlocbox.operators.div(*args, **kwargs)
Returns the divergence of the array

Parameters dx : array_like

dy : array_like

dz : array_like

dt : array_like

Arrays to operate on

Returns x : array_like

Divergence vector

Examples

>>> import pyunlocbox
>>> import numpy as np
>>> x = np.arange(16).reshape(4, 4)
>>> dx, dy = pyunlocbox.operators.grad(x)
>>> divx = pyunlocbox.operators.div(dx, dy)

This module implements operators functions :

• grad() Gradient function for up to 4 dimensions

• div() Divergence function for up to 4 dimensions

40 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

History

0.5.1 (2017-07-04)

Development status updated from Alpha to Beta.

New features:

• Acceleration module, decoupling acceleration strategies from the solvers

– Backtracking scheme

– FISTA acceleration

– FISTA with backtracking

– Regularized non-linear acceleration (RNA)

• Solvers: gradient descent algorithm

Bug fix:

• Decrease dimensionality of variables in Douglas Rachford tutorial to reduce test time and timeout on Travis
CI.

Infrastructure:

• Continuous integration: dropped 3.3 (matplotlib dropped it), added 3.6

• We don’t build PDF documentation anymore. Less burden, HTML can be downloaded from readthedocs.

0.4.0 (2016-08-01)

New feature:

• Monotone+Lipschitz forward-backward-forward primal-dual algorithm (MLFBF)

Bug fix:

• Plots generated when building documentation (not stored in the repository)

Infrastructure:

• Continuous integration: dropped 2.6 and 3.2, added 3.5

• Travis-ci: check style and build doc

• Removed tox config (too cumbersome to use on dev box)

• Monitor code coverage and report to coveralls.io

0.3.0 (2015-05-29)

New features:

• Generalized forward-backward splitting algorithm

• Projection-based primal-dual algorithm

• TV-norm function (eval, prox)

• Nuclear-norm function (eval, prox)

• L2-norm proximal operator supports non-tight frames

• Two new tutorials using the TV-norm with Forward-Backward and Douglas-Rachford for image reconstruc-
tion and denoising

• New stopping criterion XTOL allows to stop when the variable is stable

3.3. History 41

PyUNLocBoX documentation, Release 0.5.1

Bug fix:

• Much more memory efficient. Note that the array which contains the initial solution is now modified in
place.

0.2.1 (2014-08-20)

Bug fix version. Still experimental.

Bug fixes:

• Avoid complex casting to real

• Do not stop iterating if the objective function stays at zero

0.2.0 (2014-08-04)

Second usable version, available on GitHub and released on PyPI. Still experimental.

New features:

• Douglas-Rachford splitting algorithm

• Projection on the L2-ball for tight and non tight frames

• Compressed sensing tutorial using L2-ball, L2-norm and Douglas-Rachford

• Automatic solver selection

Infrastructure:

• Unit tests for all functions and solvers

• Continuous integration testing on Python 2.6, 2.7, 3.2, 3.3 and 3.4

0.1.0 (2014-06-08)

First usable version, available on GitHub and released on PyPI. Still experimental.

Features:

• Forward-backward splitting algorithm

• L1-norm function (eval and prox)

• L2-norm function (eval, grad and prox)

• Least square problem tutorial using L2-norm and forward-backward

• Compressed sensing tutorial using L1-norm, L2-norm and forward-backward

Infrastructure:

• Sphinx generated documentation using Numpy style docstrings

• Documentation hosted on Read the Docs

• Code hosted on GitHub

• Package hosted on PyPI

• Code checked by flake8

• Docstring and tutorial examples checked by doctest (as a test suite)

• Unit tests for functions module (as a test suite)

• All test suites executed in Python 2.6, 2.7 and 3.2 virtualenvs by tox

42 Chapter 3. Authors

PyUNLocBoX documentation, Release 0.5.1

• Distributed automatic testing on Travis CI continuous integration platform

References

3.4. References 43

PyUNLocBoX documentation, Release 0.5.1

44 Chapter 3. Authors

Bibliography

[BT09a] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems. SIAM Journal on Imaging Sciences, 2009.

[BT09b] Amir Beck and Marc Teboulle. Fast gradient-based algorithms for constrained total variation image
denoising and deblurring problems. Image Processing, IEEE Transactions on, 2009.

[CR07] Emmanuel Candes and Justin Romberg. Sparsity and incoherence in compressive sampling. Inverse prob-
lems, 2007. arXiv:math/0611957.

[CP07] Patrick L Combettes and Jean-Christophe Pesquet. A douglas–rachford splitting approach to nonsmooth
convex variational signal recovery. Selected Topics in Signal Processing, IEEE Journal of, 2007.

[CP11] Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal processing. In
Fixed-Point Algorithms for Inverse Problems in Science and Engineering. 2011. arXiv:0912.3522.

[KP15] Nikos Komodakis and Jean-Christophe Pesquet. Playing with duality. IEEE Signal Processing Magazine,
2015. arXiv:1406.5429.

[RFP13] Hugo Raguet, Jalal Fadili, and Gabriel Peyré. A generalized forward-backward splitting. SIAM Journal
on Imaging Sciences, 2013. arXiv:1108.4404.

[SdB16] Damien Scieur, Alexandre dAspremont, and Francis Bach. Regularized nonlinear acceleration. arXiv,
2016. arXiv:1606.04133.

45

https://arxiv.org/abs/math/0611957
https://arxiv.org/abs/0912.3522
https://arxiv.org/abs/1406.5429
https://arxiv.org/abs/1108.4404
https://arxiv.org/abs/1606.04133

PyUNLocBoX documentation, Release 0.5.1

46 Bibliography

Python Module Index

p
pyunlocbox, 20
pyunlocbox.acceleration, 39
pyunlocbox.functions, 26
pyunlocbox.operators, 40
pyunlocbox.solvers, 35

47

PyUNLocBoX documentation, Release 0.5.1

48 Python Module Index

Index

A
accel (class in pyunlocbox.acceleration), 35
algo() (pyunlocbox.solvers.solver method), 29

B
backtracking (class in pyunlocbox.acceleration), 36

C
cap() (pyunlocbox.functions.func method), 21

D
div() (in module pyunlocbox.operators), 40
douglas_rachford (class in pyunlocbox.solvers), 31
dummy (class in pyunlocbox.acceleration), 36
dummy (class in pyunlocbox.functions), 22

E
eval() (pyunlocbox.functions.func method), 21

F
fista (class in pyunlocbox.acceleration), 37
fista_backtracking (class in pyunlocbox.acceleration),

37
forward_backward (class in pyunlocbox.solvers), 31
func (class in pyunlocbox.functions), 20

G
generalized_forward_backward (class in pyun-

locbox.solvers), 32
grad() (in module pyunlocbox.operators), 39
grad() (pyunlocbox.functions.func method), 21
gradient_descent (class in pyunlocbox.solvers), 30

L
lambda_ (pyunlocbox.acceleration.regularized_nonlinear

attribute), 39

M
mlfbf (class in pyunlocbox.solvers), 33

N
norm (class in pyunlocbox.functions), 23

norm_l1 (class in pyunlocbox.functions), 23
norm_l2 (class in pyunlocbox.functions), 23
norm_nuclear (class in pyunlocbox.functions), 24
norm_tv (class in pyunlocbox.functions), 24

P
post() (pyunlocbox.acceleration.accel method), 35
post() (pyunlocbox.solvers.solver method), 30
pre() (pyunlocbox.acceleration.accel method), 36
pre() (pyunlocbox.solvers.solver method), 30
primal_dual (class in pyunlocbox.solvers), 33
proj (class in pyunlocbox.functions), 25
proj_b2 (class in pyunlocbox.functions), 25
projection_based (class in pyunlocbox.solvers), 34
prox() (pyunlocbox.functions.func method), 22
pyunlocbox (module), 20
pyunlocbox.acceleration (module), 39
pyunlocbox.functions (module), 26
pyunlocbox.operators (module), 40
pyunlocbox.solvers (module), 35

R
regularized_nonlinear (class in pyun-

locbox.acceleration), 38

S
solve() (in module pyunlocbox.solvers), 27
solver (class in pyunlocbox.solvers), 29

U
update_sol() (pyunlocbox.acceleration.accel method),

36
update_step() (pyunlocbox.acceleration.accel method),

36

49

	Installation
	Contributing
	Authors
	Tutorials
	Reference guide
	History
	References

	Bibliography
	Python Module Index

