
pyunlocbox Documentation
Release 0.2.1

EPFL LTS2

Jul 04, 2017





Contents

1 About 1
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Tutorials 3
2.1 Simple least square problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Compressed sensing using forward-backward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Compressed sensing using douglas-rachford . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Image reconstruction (Forward-Backward, Total Variation, L2-norm) . . . . . . . . . . . . . . . . . 13
2.5 Image denoising (Douglas-Rachford, Total Variation, L2-norm) . . . . . . . . . . . . . . . . . . . . 15

3 Reference guide 19
3.1 Toolbox overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Functions module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Solvers module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Operators module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Contributing 35
4.1 Types of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Get Started! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Pull Request Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 History 39
5.1 0.2.3 (2015-02-06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 0.2.2 (2015-01-16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 0.2.1 (2014-08-20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 0.2.0 (2014-08-04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 0.1.0 (2014-06-08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 References 41

7 Indices and tables 43

Bibliography 45

Python Module Index 47

i



ii



CHAPTER 1

About

PyUNLocBoX is a convex optimization toolbox using proximal splitting methods implemented in Python. It is a free
software distributed under the BSD license and is a port of the Matlab UNLocBoX toolbox.

• Development : https://github.com/epfl-lts2/pyunlocbox

• Documentation : http://pyunlocbox.readthedocs.org

• PyPI package : https://pypi.python.org/pypi/pyunlocbox

• Travis continuous integration : https://travis-ci.org/epfl-lts2/pyunlocbox

• UNLocBoX matlab toolbox : http://unlocbox.sourceforge.net

Features

• Solvers

– Forward-backward splitting algorithm

– Douglas-Rachford splitting algorithm

• Proximal operators

– L1-norm

– L2-norm

– TV-norm

– Projection on the L2-ball

Installation

PyUnLocBox is continuously tested with Python 2.6, 2.7, 3.2, 3.3 and 3.4.
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System-wide installation:

$ pip install pyunlocbox

Installation in an isolated virtual environment:

$ mkvirtualenv --system-site-packages pyunlocbox
$ pip install pyunlocbox

You need virtualenvwrapper to run this command. The --system-site-packages option could be useful if you
want to use a shared system installation of numpy and matplotlib. Their building and installation require quite some
dependencies.

Another way is to manually download from PyPI, unpack the package and install with:

$ python setup.py install

Execute the project test suite once to make sure you have a working install:

$ python setup.py test

Authors

PyUNLocBoX was started in 2014 as an academic project for research purpose at the LTS2 laboratory from EPFL.
See our website at http://lts2www.epfl.ch.

Development lead :

• Michaël Defferrard from EPFL LTS2 <michael.defferrard@epfl.ch>

• Nathanaël Perraudin from EPFL LTS2 <nathanael.perraudin@epfl.ch>

Contributors :

• Alexandre Lafaye from EPFL LTS2 <alexandre.lafaye@epfl.ch>

• Basile Châtillon from EPFL LTS2 <basile.chatillon@epfl.ch>

• Nicolas Rod from EPFL LTS2 <nicolas.rod@epfl.ch>
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CHAPTER 2

Tutorials

The following are some tutorials which show and explain how to use the toolbox to solve some real problems. They
goes in increasing degree of difficulty. If you have never used the toolbox before, you are encouraged to follow them
in order as they build one upon the other.

Simple least square problem

This simplistic example is only meant to demonstrate the basic workflow of the toolbox. Here we want to solve a least
square problem, i.e. we want the solution to converge to the original signal without any constraint. Lets define this
signal by :

>>> y = [4, 5, 6, 7]

The first function to minimize is the sum of squared distances between the current signal x and the original y. For this
purpose, we instantiate an L2-norm object :

>>> from pyunlocbox import functions
>>> f1 = functions.norm_l2(y=y)

This standard function object provides the eval(), grad() and prox() methods that will be useful to the solver.
We can evaluate them at any given point :

>>> f1.eval([0, 0, 0, 0])
126
>>> f1.grad([0, 0, 0, 0])
array([ -8, -10, -12, -14])
>>> f1.prox([0, 0, 0, 0], 1)
array([ 2.66666667, 3.33333333, 4. , 4.66666667])

We need a second function to minimize, which usually describes a constraint. As we have no constraint, we just define
a dummy function object by hand. We have to define the _eval() and _grad() methods as the solver we will use
requires it :

3
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>>> f2 = functions.func()
>>> f2._eval = lambda x: 0
>>> f2._grad = lambda x: 0

Note: We could also have used the pyunlocbox.functions.dummy function object.

We can now instantiate the solver object :

>>> from pyunlocbox import solvers
>>> solver = solvers.forward_backward()

And finally solve the problem :

>>> x0 = [0., 0., 0., 0.]
>>> ret = solvers.solve([f2, f1], x0, solver, atol=1e-5, verbosity='HIGH')

func evaluation : 0.000000e+00
norm_l2 evaluation : 1.260000e+02

INFO: Forward-backward method : FISTA
Iteration 1 of forward_backward :

func evaluation : 0.000000e+00
norm_l2 evaluation : 1.400000e+01
objective = 1.40e+01

Iteration 2 of forward_backward :
func evaluation : 0.000000e+00
norm_l2 evaluation : 1.555556e+00
objective = 1.56e+00

Iteration 3 of forward_backward :
func evaluation : 0.000000e+00
norm_l2 evaluation : 3.293044e-02
objective = 3.29e-02

Iteration 4 of forward_backward :
func evaluation : 0.000000e+00
norm_l2 evaluation : 8.780588e-03
objective = 8.78e-03

Iteration 5 of forward_backward :
func evaluation : 0.000000e+00
norm_l2 evaluation : 6.391406e-03
objective = 6.39e-03

Iteration 6 of forward_backward :
func evaluation : 0.000000e+00
norm_l2 evaluation : 5.713369e-04
objective = 5.71e-04

Iteration 7 of forward_backward :
func evaluation : 0.000000e+00
norm_l2 evaluation : 1.726501e-05
objective = 1.73e-05

Iteration 8 of forward_backward :
func evaluation : 0.000000e+00
norm_l2 evaluation : 6.109470e-05
objective = 6.11e-05

Iteration 9 of forward_backward :
func evaluation : 0.000000e+00
norm_l2 evaluation : 1.212636e-05
objective = 1.21e-05

Iteration 10 of forward_backward :
func evaluation : 0.000000e+00

4 Chapter 2. Tutorials
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norm_l2 evaluation : 7.460428e-09
objective = 7.46e-09

Solution found after 10 iterations :
objective function f(sol) = 7.460428e-09
stopping criterion : ATOL

The solving function returns several values, one is the found solution :

>>> ret['sol']
array([ 3.99996922, 4.99996153, 5.99995383, 6.99994614])

Another one is the value returned by each function objects at each iteration. As we passed two function objects
(L2-norm and dummy), the objective is a 2 by 11 (10 iterations plus the evaluation at x0) ndarray. Lets plot a
convergence graph out of it :

>>> import numpy as np
>>> objective = np.array(ret['objective'])
>>> try:
... import matplotlib.pyplot as plt
... _ = plt.figure()
... _ = plt.semilogy(objective[:, 1], 'x', label='L2-norm')
... _ = plt.semilogy(objective[:, 0], label='Dummy')
... _ = plt.semilogy(np.sum(objective, axis=1), label='Global objective')
... _ = plt.grid(True)
... _ = plt.title('Convergence')
... _ = plt.legend(numpoints=1)
... _ = plt.xlabel('Iteration number')
... _ = plt.ylabel('Objective function value')
... #plt.savefig('doc/tutorials/simple_convergence.pdf')
... #plt.savefig('doc/tutorials/simple_convergence.png')
... except:
... pass

The below graph shows an exponential convergence of the objective function. The global objective is obviously only
composed of the L2-norm as the dummy function object was defined to always evaluate to 0 (f2._eval = lambda
x: 0).

2.1. Simple least square problem 5
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Compressed sensing using forward-backward

This tutorial presents a compressed sensing problem solved by the forward-backward splitting algorithm. The problem
can be expressed as follow :

argmin𝑥 ‖𝐴𝑥− 𝑦‖2 + 𝜏‖𝑥‖1

where y are the measurements, A is the measurement matrix and tau is the regularization parameter.

The number of measurements M is computed with respect to the signal size N and the sparsity level K :

>>> N = 5000
>>> K = 100
>>> import numpy as np
>>> M = int(K * max(4, np.ceil(np.log(N))))
>>> print('Number of measurements : %d' % (M,))
Number of measurements : 900
>>> print('Compression ratio : %3.2f' % (float(N)/M,))
Compression ratio : 5.56

Note: With the above defined number of measurements, the algorithm is supposed to very often perform a perfect
reconstruction.

6 Chapter 2. Tutorials
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We generate a random measurement matrix A :

>>> np.random.seed(1) # Reproducible results.
>>> A = np.random.standard_normal((M, N))

Create the K sparse signal x :

>>> x = np.zeros(N)
>>> I = np.random.permutation(N)
>>> x[I[0:K]] = np.random.standard_normal(K)
>>> x = x / np.linalg.norm(x)

Generate the measured signal y :

>>> y = np.dot(A, x)

The first objective function to minimize is defined by

𝑓1(𝑥) = 𝜏 · ‖𝑥‖1

which can be expressed by the toolbox L1-norm function object. It can be instantiated as follow, while setting the
regularization parameter tau :

>>> from pyunlocbox import functions
>>> tau = 1.0
>>> f1 = functions.norm_l1(lambda_=tau)

The second objective function to minimize is defined by

𝑓2(𝑥) = ‖𝐴𝑥− 𝑏‖22

which can be expressed by the toolbox L2-norm function object. It can be instantiated as follow :

>>> f2 = functions.norm_l2(y=y, A=A)

or alternatively as follow :

>>> A_ = lambda x: np.dot(A, x)
>>> At_ = lambda x: np.dot(np.transpose(A), x)
>>> f3 = functions.norm_l2(y=y, A=A_, At=At_)

Note: In this case the forward and adjoint operators were passed as functions not as matrices.

A third alternative would be to define the function object by hand :

>>> f4 = functions.func()
>>> f4._grad = lambda x: 2.0 * np.dot(np.transpose(A), np.dot(A, x) - y)
>>> f4._eval = lambda x: np.linalg.norm(np.dot(A, x) - y)**2

Note: The three alternatives to instantiate the function objects (f2, f3 and f4) are strictly equivalent and give the exact
same results.

Now that the two function objects to minimize (the L1-norm and the L2-norm) are instantiated, we can instantiate the
solver object. The step size for optimal convergence is 1

𝛽 where 𝛽 is the Lipschitz constant of the gradient of f2, f3, f4

2.2. Compressed sensing using forward-backward 7
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given by:

𝛽 = 2 · ‖𝐴‖2op = 2 · 𝜆𝑚𝑎𝑥(𝐴
*𝐴).

To solve this problem, we use the forward-backward splitting algorithm which is instantiated as follow :

>>> step = 0.5 / np.linalg.norm(A, ord=2)**2
>>> from pyunlocbox import solvers
>>> solver = solvers.forward_backward(method='FISTA', step=step)

Note: A complete description of the constructor parameters and default values is given by the solver object
pyunlocbox.solvers.forward_backward reference documentation.

After the instantiations of the functions and solver objects, the setting of a starting point x0, the problem is solved by
the toolbox solving function as follow :

>>> x0 = np.zeros(N)
>>> ret = solvers.solve([f1, f2], x0, solver, rtol=1e-4, maxit=300)
Solution found after 176 iterations :

objective function f(sol) = 8.221302e+00
stopping criterion : RTOL

Note: A complete description of the parameters, their default values and the returned values is given by the solving
function pyunlocbox.solvers.solve() reference documentation.

Let’s display the results :

>>> try:
... import matplotlib, sys
... cmd_backend = 'matplotlib.use("AGG")'
... _ = eval(cmd_backend) if 'matplotlib.pyplot' not in sys.modules else 0
... import matplotlib.pyplot as plt
... _ = plt.figure()
... _ = plt.plot(x, 'o', label='Original')
... _ = plt.plot(ret['sol'], 'xr', label='Reconstructed')
... _ = plt.grid(True)
... _ = plt.title('Achieved reconstruction')
... _ = plt.legend(numpoints=1)
... _ = plt.xlabel('Signal dimension number')
... _ = plt.ylabel('Signal value')
... _ = plt.savefig('doc/tutorials/cs_fb_results.pdf')
... _ = plt.savefig('doc/tutorials/cs_fb_results.png')
... except:
... pass

8 Chapter 2. Tutorials
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The above figure shows a good reconstruction which is both sparse (thanks to the L1-norm objective) and close to the
measurements (thanks to the L2-norm objective).

Let’s display the convergence of the two objective functions :

>>> try:
... objective = np.array(ret['objective'])
... _ = plt.figure()
... _ = plt.semilogy(objective[:, 0], label='L1-norm objective')
... _ = plt.semilogy(objective[:, 1], label='L2-norm objective')
... _ = plt.semilogy(np.sum(objective, axis=1), label='Global objective')
... _ = plt.grid(True)
... _ = plt.title('Convergence')
... _ = plt.legend()
... _ = plt.xlabel('Iteration number')
... _ = plt.ylabel('Objective function value')
... _ = plt.savefig('doc/tutorials/cs_fb_convergence.pdf')
... _ = plt.savefig('doc/tutorials/cs_fb_convergence.png')
... except:
... pass

2.2. Compressed sensing using forward-backward 9
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Compressed sensing using douglas-rachford

This tutorial presents a compressed sensing problem solved by the douglas-rachford splitting algorithm. The problem
can be expressed as follow :

argmin𝑥 ‖𝑥‖1 such that ‖𝐴𝑥− 𝑦‖2 ≤ 𝜖

where y are the measurements and A is the measurement matrix.

The number of measurements M is computed with respect to the signal size N and the sparsity level K :

>>> N = 5000
>>> K = 100
>>> import numpy as np
>>> M = int(K * max(4, np.ceil(np.log(N))))
>>> print('Number of measurements : %d' % (M,))
Number of measurements : 900
>>> print('Compression ratio : %3.2f' % (float(N)/M,))
Compression ratio : 5.56

Note: With the above defined number of measurements, the algorithm is supposed to very often perform a perfect
reconstruction.

10 Chapter 2. Tutorials
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We generate a random measurement matrix A :

>>> np.random.seed(1) # Reproducible results.
>>> A = np.random.standard_normal((M, N))

Create the K sparse signal x :

>>> x = np.zeros(N)
>>> I = np.random.permutation(N)
>>> x[I[0:K]] = np.random.standard_normal(K)
>>> x = x / np.linalg.norm(x)

Generate the measured signal y :

>>> y = np.dot(A, x)

The first objective function to minimize is defined by

𝑓1(𝑥) = ‖𝑥‖1

which can be expressed by the toolbox L1-norm function object. It can be instantiated as follow :

>>> from pyunlocbox import functions
>>> f1 = functions.norm_l1()

The second objective function to minimize is defined by

𝑓2(𝑥) = 𝑖𝑆(𝑥)

where 𝑖𝑆() is the indicator function of the set S which is zero if z is in the set and infinite otherwise. The set S is defined
by

{︀
𝑧 ∈ R𝑁 | ‖𝐴(𝑧)− 𝑦‖2 ≤ 𝜖

}︀
. This function can be expressed by the toolbox L2-ball function object which can

be instantiated as follow :

>>> f2 = functions.proj_b2(epsilon=1e-7, y=y, A=A, tight=False,
... nu=np.linalg.norm(A, ord=2)**2)

Now that the two function objects to minimize (the L1-norm and the L2-ball) are instantiated, we can instantiate the
solver object. To solve this problem, we use the douglas-rachford splitting algorithm which is instantiated as follow :

>>> from pyunlocbox import solvers
>>> solver = solvers.douglas_rachford(step=1e-2)

After the instantiations of the functions and solver objects, the setting of a starting point x0, the problem is solved by
the toolbox solving function as follow :

>>> x0 = np.zeros(N)
>>> ret = solvers.solve([f1, f2], x0, solver, rtol=1e-4, maxit=300)
Solution found after 35 iterations :

objective function f(sol) = 8.508725e+00
stopping criterion : RTOL

Let’s display the results :

>>> try:
... import matplotlib, sys
... cmd_backend = 'matplotlib.use("AGG")'
... _ = eval(cmd_backend) if 'matplotlib.pyplot' not in sys.modules else 0
... import matplotlib.pyplot as plt

2.3. Compressed sensing using douglas-rachford 11
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... _ = plt.figure()

... _ = plt.plot(x, 'o', label='Original')

... _ = plt.plot(ret['sol'], 'xr', label='Reconstructed')

... _ = plt.grid(True)

... _ = plt.title('Achieved reconstruction')

... _ = plt.legend(numpoints=1)

... _ = plt.xlabel('Signal dimension number')

... _ = plt.ylabel('Signal value')

... _ = plt.savefig('doc/tutorials/cs_dr_results.pdf')

... _ = plt.savefig('doc/tutorials/cs_dr_results.png')

... except:

... pass
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The above figure shows a good reconstruction which is both sparse (thanks to the L1-norm objective) and close to the
measurements (thanks to the L2-ball constraint).

Let’s display the convergence of the objective function :

>>> try:
... objective = np.array(ret['objective'])
... _ = plt.figure()
... _ = plt.semilogy(objective[:, 0], label='L1-norm objective')
... _ = plt.grid(True)
... _ = plt.title('Convergence')
... _ = plt.legend()
... _ = plt.xlabel('Iteration number')

12 Chapter 2. Tutorials
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... _ = plt.ylabel('Objective function value')

... _ = plt.savefig('doc/tutorials/cs_dr_convergence.pdf')

... _ = plt.savefig('doc/tutorials/cs_dr_convergence.png')

... except:

... pass
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Image reconstruction (Forward-Backward, Total Variation, L2-norm)

This tutorial presents an image reconstruction problem solved by the Forward-Backward splitting algorithm. The
convex optimization problem is the sum of a data fidelity term and a regularization term which expresses a prior on
the smoothness of the solution, given by

min
𝑥

𝜏‖𝑔(𝑥)− 𝑦‖22 + ‖𝑥‖TV

where ‖ · ‖TV denotes the total variation, y are the measurements, g is a masking operator and 𝜏 expresses the trade-off
between the two terms.

Load an image and convert it to grayscale

>>> import matplotlib.image as mpimg
>>> import numpy as np
>>> im_original = mpimg.imread('doc/tutorials/img/lena.png')
>>> im_original = np.dot(im_original[..., :3], [0.299, 0.587, 0.144])

2.4. Image reconstruction (Forward-Backward, Total Variation, L2-norm) 13
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and generate a random masking matrix

>>> np.random.seed(14) # Reproducible results.
>>> mask = np.random.uniform(size=im_original.shape)
>>> mask = mask > 0.85

which masks 85% of the pixels. The masked image is given by

>>> g = lambda x: mask * x
>>> im_masked = g(im_original)

The prior objective to minimize is defined by

𝑓1(𝑥) = ‖𝑥‖TV

which can be expressed by the toolbox TV-norm function object, instantiated with

>>> from pyunlocbox import functions
>>> f1 = functions.norm_tv(maxit=50, dim=2)

The fidelity objective to minimize is defined by

𝑓2(𝑥) = 𝜏‖𝑔(𝑥)− 𝑦‖22

which can be expressed by the toolbox L2-norm function object, instantiated with

>>> tau = 100
>>> f2 = functions.norm_l2(y=im_masked, A=g, lambda_=tau)

Note: We set 𝜏 to a large value as we trust our measurements and want the solution to be close to them. For noisy
measurements a lower value should be considered.

The step size for optimal convergence is 1
𝛽 where 𝛽 = 2𝜏 is the Lipschitz constant of the gradient of 𝑓2 [BT09a]. The

Forward-Backward splitting algorithm is instantiated with

>>> from pyunlocbox import solvers
>>> solver = solvers.forward_backward(method='FISTA', step=0.5/tau)

and the problem solved with

>>> x0 = np.array(im_masked) # Make a copy to preserve im_masked.
>>> ret = solvers.solve([f1, f2], x0, solver, maxit=100)
Solution found after 94 iterations :

objective function f(sol) = 4.268147e+03
stopping criterion : RTOL

Let’s display the results:

>>> try:
... import matplotlib.pyplot as plt
... fig = plt.figure()
... ax1 = fig.add_subplot(1, 3, 1)
... _ = ax1.imshow(im_original, cmap='gray')
... _ = ax1.axis('off')
... _ = ax1.set_title('Original image')
... ax2 = fig.add_subplot(1, 3, 2)
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... _ = ax2.imshow(im_masked, cmap='gray')

... _ = ax2.axis('off')

... _ = ax2.set_title('Masked image')

... ax3 = fig.add_subplot(1, 3, 3)

... _ = ax3.imshow(ret['sol'], cmap='gray')

... _ = ax3.axis('off')

... _ = ax3.set_title('Reconstructed image')

... #fig.show()

... #fig.savefig('doc/tutorials/img/reconstruct.pdf', bbox_inches='tight')

... #fig.savefig('doc/tutorials/img/reconstruct.png', bbox_inches='tight')

... except:

... pass

Original image Masked image Reconstructed image

The above figure shows a good reconstruction which is both smooth (the TV prior) and close to the measurements (the
L2 fidelity).

Image denoising (Douglas-Rachford, Total Variation, L2-norm)

This tutorial presents an image denoising problem solved by the Douglas-Rachford splitting algorithm. The convex
optimization problem, a term which expresses a prior on the smoothness of the solution constrained by some data
fidelity, is given by

min
𝑥

‖𝑥‖TV s.t. ‖𝑥− 𝑦‖2 ≤ 𝜖

where ‖ · ‖TV denotes the total variation, y are the measurements and 𝜖 expresses the noise level.

Create a white circle on a black background

>>> import numpy as np
>>> N = 650
>>> im_original = np.resize(np.linspace(-1, 1, N), (N,N))
>>> im_original = np.sqrt(im_original**2 + im_original.T**2)
>>> im_original = im_original < 0.7

and add some random Gaussian noise

>>> sigma = 0.5 # Variance of 0.25.
>>> np.random.seed(7) # Reproducible results.
>>> im_noisy = im_original + sigma * np.random.normal(size=im_original.shape)

2.5. Image denoising (Douglas-Rachford, Total Variation, L2-norm) 15
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The prior objective function to minimize is defined by

𝑓1(𝑥) = ‖𝑥‖TV

which can be expressed by the toolbox TV-norm function object, instantiated with

>>> from pyunlocbox import functions
>>> f1 = functions.norm_tv(maxit=50, dim=2)

The fidelity constraint expressed as an objective function to minimize is defined by

𝑓2(𝑥) = 𝜄𝑆(𝑥)

where 𝜄𝑆() is the indicator function of the set 𝑆 = {𝑧 ∈ R𝑛 | ‖𝑧 − 𝑦‖2 ≤ 𝜖} which is zero if 𝑧 is in the set and infinite
otherwise. This function can be expressed by the toolbox L2-ball function, instantiated with

>>> y = np.reshape(im_noisy, -1) # Reshape the 2D image as a 1D vector.
>>> epsilon = N * sigma # Variance multiplied by N^2.
>>> f = functions.proj_b2(y=y, epsilon=epsilon)
>>> f2 = functions.func()
>>> f2._eval = lambda x: 0 # Indicator functions evaluate to zero.
>>> def prox(x, step):
... return np.reshape(f.prox(np.reshape(x, -1), 0), im_noisy.shape)
>>> f2._prox = prox

Note: We defined a custom proximal operator which transforms the 2D image as a 1D vector because pyunlocbox.
functions.proj_b2 operates on the columns of x while pyunlocbox.functions.norm_tv needs a two-
dimensional array to compute the 2D TV norm.

The Douglas-Rachford splitting algorithm is instantiated with

>>> from pyunlocbox import solvers
>>> solver = solvers.douglas_rachford(step=0.1)

and the problem solved with

>>> x0 = np.array(im_noisy) # Make a copy to preserve y aka im_noisy.
>>> ret = solvers.solve([f1, f2], x0, solver)
Solution found after 25 iterations :

objective function f(sol) = 2.080376e+03
stopping criterion : RTOL

Let’s display the results:

>>> try:
... import matplotlib.pyplot as plt
... fig = plt.figure()
... ax1 = fig.add_subplot(1, 3, 1)
... _ = ax1.imshow(im_original, cmap='gray')
... _ = ax1.axis('off')
... _ = ax1.set_title('Original image')
... ax2 = fig.add_subplot(1, 3, 2)
... _ = ax2.imshow(im_noisy, cmap='gray')
... _ = ax2.axis('off')
... _ = ax2.set_title('Noisy image')
... ax3 = fig.add_subplot(1, 3, 3)
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... _ = ax3.imshow(ret['sol'], cmap='gray')

... _ = ax3.axis('off')

... _ = ax3.set_title('Denoised image')

... #fig.show()

... #fig.savefig('doc/tutorials/img/denoising.pdf', bbox_inches='tight')

... #fig.savefig('doc/tutorials/img/denoising.png', bbox_inches='tight')

... except:

... pass

Original image Noisy image Denoised image

The above figure shows a good reconstruction which is both smooth (the TV prior) and close to the measurements (the
L2 fidelity constraint).

2.5. Image denoising (Douglas-Rachford, Total Variation, L2-norm) 17
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CHAPTER 3

Reference guide

Toolbox overview

PyUNLocBoX is a convex optimization toolbox using proximal splitting methods. It is a port of the Matlab UN-
LocBoX toolbox.

The toolbox is organized around two classes hierarchies : the functions and the solvers. Instantiated functions repre-
sent convex functions to optimize. Instantiated solvers represent solving algorithms. The pyunlocbox.solvers.
solve() solving function takes as parameters a solver object and some function objects to actually solve the opti-
mization problem.

The pyunlocbox package is divided into the following modules :

• pyunlocbox.solvers: problem solvers, implement the solvers class hierarchy and the solving function

• pyunlocbox.functions: functions to be passed to the solvers, implement the functions class hierarchy

Following is a typical usage example who solves an optimization problem composed by the sum of two convex
functions. The functions and solver objects are first instantiated with the desired parameters. The problem is then
solved by a call to the solving function.

>>> import pyunlocbox
>>> f1 = pyunlocbox.functions.norm_l2(y=[4, 5, 6, 7])
>>> f2 = pyunlocbox.functions.dummy()
>>> solver = pyunlocbox.solvers.forward_backward()
>>> ret = pyunlocbox.solvers.solve([f1, f2], [0., 0, 0, 0], solver, atol=1e-5)
Solution found after 10 iterations :

objective function f(sol) = 7.460428e-09
stopping criterion : ATOL

>>> ret['sol']
array([ 3.99996922, 4.99996153, 5.99995383, 6.99994614])

19
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Functions module

Function objects

Interface

class pyunlocbox.functions.func(y=0, A=None, At=None, tight=True, nu=1, tol=0.001, maxit=200,
**kwargs)

Bases: object

This class defines the function object interface.

It is intended to be a base class for standard functions which will implement the required methods. It can also
be instantiated by user code and dynamically modified for rapid testing. The instanced objects are meant to be
passed to the pyunlocbox.solvers.solve() solving function.

Parameters y : array_like, optional

Measurements. Default is 0.

A : function or ndarray, optional

The forward operator. Default is the identity, 𝐴(𝑥) = 𝑥. If A is an ndarray, it will be
converted to the operator form.

At : function or ndarray, optional

The adjoint operator. If At is an ndarray, it will be converted to the operator form.
If A is an ndarray, default is the transpose of A. If A is a function, default is A,
𝐴𝑡(𝑥) = 𝐴(𝑥).

tight : bool, optional

True if A is a tight frame, False otherwise. Default is True.

nu : float, optional

Bound on the norm of the operator A, i.e. ‖𝐴(𝑥)‖2 ≤ 𝜈‖𝑥‖2. Default is 1.

tol : float, optional

The tolerance stopping criterion. The exact definition depends on the function object,
please see the documentation of the considered function. Default is 1e-3.

maxit : int, optional

The maximum number of iterations. Default is 200.

Examples

Let’s define a parabola as an example of the manual implementation of a function object :

>>> import pyunlocbox
>>> f = pyunlocbox.functions.func()
>>> f._eval = lambda x: x**2
>>> f._grad = lambda x: 2*x
>>> x = [1, 2, 3, 4]
>>> f.eval(x)
array([ 1, 4, 9, 16])
>>> f.grad(x)
array([2, 4, 6, 8])
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>>> f.cap(x)
['EVAL', 'GRAD']

cap(x)
Test the capabilities of the function object.

Parameters x : array_like

The evaluation point. Not really needed, but this function calls the methods of the object
to test if they can properly execute without raising an exception. Therefore it needs some
evaluation point with a consistent size.

Returns cap : list of string

A list of capabilities (‘EVAL’, ‘GRAD’, ‘PROX’).

eval(x)
Function evaluation.

Parameters x : array_like

The evaluation point. If x is a matrix, the function gets evaluated for each column, as if
it was a set of independent problems. Some functions, like the nuclear norm, are only
defined on matrices.

Returns z : float

The objective function evaluated at x. If x is a matrix, the sum of the objectives is
returned.

Notes

This method is required by the pyunlocbox.solvers.solve() solving function to evaluate the
objective function. Each function class should therefore define it.

grad(x)
Function gradient.

Parameters x : array_like

The evaluation point. If x is a matrix, the function gets evaluated for each column, as if
it was a set of independent problems. Some functions, like the nuclear norm, are only
defined on matrices.

Returns z : ndarray

The objective function gradient evaluated for each column of x.

Notes

This method is required by some solvers.

prox(x, T)
Function proximal operator.

Parameters x : array_like

The evaluation point. If x is a matrix, the function gets evaluated for each column, as if
it was a set of independent problems. Some functions, like the nuclear norm, are only
defined on matrices.
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T : float

The regularization parameter.

Returns z : ndarray

The proximal operator evaluated for each column of x.

Notes

This method is required by some solvers.

The proximal operator is defined by prox𝛾𝑓 (𝑥) = argmin𝑧
1
2‖𝑥− 𝑧‖22 + 𝛾𝑓(𝑧)

Dummy function

class pyunlocbox.functions.dummy(**kwargs)
Bases: pyunlocbox.functions.func

Dummy function object.

This can be used as a second function object when there is only one function to minimize. It always evaluates
as 0.

Examples

>>> import pyunlocbox
>>> f = pyunlocbox.functions.dummy()
>>> x = [1, 2, 3, 4]
>>> f.eval(x)
0
>>> f.prox(x, 1)
array([1, 2, 3, 4])
>>> f.grad(x)
array([ 0., 0., 0., 0.])

Norm operators class hierarchy

Base class

class pyunlocbox.functions.norm(lambda_=1, w=1, **kwargs)
Bases: pyunlocbox.functions.func

Base class which defines the attributes of the norm objects.

See generic attributes descriptions of the pyunlocbox.functions.func base class.

Parameters lambda_ : float, optional

Regularization parameter 𝜆. Default is 1.

w : array_like, optional

Weights for a weighted norm. Default is 1.
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L1-norm

class pyunlocbox.functions.norm_l1(**kwargs)
Bases: pyunlocbox.functions.norm

L1-norm function object.

See generic attributes descriptions of the pyunlocbox.functions.norm base class. Note that the con-
structor takes keyword-only parameters.

Notes

•The L1-norm of the vector x is given by 𝜆‖𝑤 · (𝐴(𝑥)− 𝑦)‖1.

•The L1-norm proximal operator evaluated at x is given by argmin𝑧
1
2‖𝑥−𝑧‖22+𝛾‖𝑤 ·(𝐴(𝑧)−𝑦)‖1 where

𝛾 = 𝜆 · 𝑇 . This is simply a soft thresholding.

Examples

>>> import pyunlocbox
>>> f = pyunlocbox.functions.norm_l1()
>>> f.eval([1, 2, 3, 4])
10
>>> f.prox([1, 2, 3, 4], 1)
array([0, 1, 2, 3])

L2-norm

class pyunlocbox.functions.norm_l2(**kwargs)
Bases: pyunlocbox.functions.norm

L2-norm function object.

See generic attributes descriptions of the pyunlocbox.functions.norm base class. Note that the con-
structor takes keyword-only parameters.

Notes

•The squared L2-norm of the vector x is given by 𝜆‖𝑤 · (𝐴(𝑥)− 𝑦)‖22.

•The squared L2-norm proximal operator evaluated at x is given by argmin𝑧
1
2‖𝑥−𝑧‖22+𝛾‖𝑤·(𝐴(𝑧)−𝑦)‖22

where 𝛾 = 𝜆 · 𝑇 .

•The squared L2-norm gradient evaluated at x is given by 2𝜆 ·𝐴𝑡(𝑤 · (𝐴(𝑥)− 𝑦)).

Examples

>>> import pyunlocbox
>>> f = pyunlocbox.functions.norm_l2()
>>> x = [1, 2, 3, 4]
>>> f.eval(x)
30
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>>> f.prox(x, 1)
array([ 0.33333333, 0.66666667, 1. , 1.33333333])
>>> f.grad(x)
array([2, 4, 6, 8])

Nuclear-norm

class pyunlocbox.functions.norm_nuclear(**kwargs)
Bases: pyunlocbox.functions.norm

Nuclear-norm function object.

See generic attributes descriptions of the pyunlocbox.functions.norm base class. Note that the con-
structor takes keyword-only parameters.

Notes

•The nuclear-norm of the matrix x is given by 𝜆‖𝑥‖* = 𝜆 trace(
√
𝑥*𝑥) = 𝜆

∑︀𝑁
𝑖=1 |𝑒𝑖| where e_i are the

eigenvalues of x.

•The nuclear-norm proximal operator evaluated at x is given by argmin𝑧
1
2‖𝑥 − 𝑧‖22 + 𝛾‖𝑥‖* where 𝛾 =

𝜆 · 𝑇 , which is a soft-thresholding of the eigenvalues.

Examples

>>> import pyunlocbox
>>> f = pyunlocbox.functions.norm_nuclear()
>>> f.eval([[1, 2],[2, 3]])
4.4721359549995787
>>> f.prox([[1, 2],[2, 3]], 1)
array([[ 0.89442719, 1.4472136 ],

[ 1.4472136 , 2.34164079]])

TV-norm

class pyunlocbox.functions.norm_tv(dim=2, verbosity=’LOW’, **kwargs)
Bases: pyunlocbox.functions.norm

TV Norm function object.

See generic attributes descriptions of the pyunlocbox.functions.norm base class. Note that the con-
structor takes keyword-only parameters.

Notes

TODO

See [BT09b] for details about the algorithm.
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Examples

>>> import pyunlocbox
>>> import numpy as np
>>> f = pyunlocbox.functions.norm_tv()
>>> x = np.arange(0, 16)
>>> x = x.reshape(4, 4)
>>> f.eval(x)

norm_tv evaluation : 5.210795e+01
52.107950630558953

Projection operators class hierarchy

Base class

class pyunlocbox.functions.proj(epsilon=1, method=’FISTA’, **kwargs)
Bases: pyunlocbox.functions.func

Base class which defines the attributes of the proj objects.

See generic attributes descriptions of the pyunlocbox.functions.func base class.

Parameters epsilon : float, optional

The radius of the ball. Default is 1.

method : {‘FISTA’, ‘ISTA’}, optional

The method used to solve the problem. It can be ‘FISTA’ or ‘ISTA’. Default is ‘FISTA’.

Notes

•All indicator functions (projections) evaluate to zero by definition.

L2-ball

class pyunlocbox.functions.proj_b2(**kwargs)
Bases: pyunlocbox.functions.proj

L2-ball function object.

This function is the indicator function 𝑖𝑆(𝑧) of the set S which is zero if z is in the set and infinite otherwise.
The set S is defined by

{︀
𝑧 ∈ R𝑁 | ‖𝐴(𝑧)− 𝑦‖2 ≤ 𝜖

}︀
.

See generic attributes descriptions of the pyunlocbox.functions.proj base class. Note that the con-
structor takes keyword-only parameters.

Notes

•The tol parameter is defined as the tolerance for the projection on the L2-ball. The algorithm stops if
𝜖

1−𝑡𝑜𝑙 ≤ ‖𝑦 −𝐴(𝑧)‖2 ≤ 𝜖
1+𝑡𝑜𝑙 .

•The evaluation of this function is zero.
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•The L2-ball proximal operator evaluated at x is given by argmin𝑧
1
2‖𝑥−𝑧‖22+𝑖𝑆(𝑧) which has an identical

solution as argmin𝑧 ‖𝑥 − 𝑧‖22 such that ‖𝐴(𝑧) − 𝑦‖2 ≤ 𝜖. It is thus a projection of the vector x onto an
L2-ball of diameter epsilon.

Examples

>>> import pyunlocbox
>>> f = pyunlocbox.functions.proj_b2(y=[1, 1])
>>> x = [3, 3]
>>> f.eval(x)
0
>>> f.prox(x, 0)
array([ 1.70710678, 1.70710678])

This module implements function objects which are then passed to solvers. The func base class defines the interface
whereas specialised classes who inherit from it implement the methods. These classes include :

• dummy: A dummy function object which returns 0 for the _eval(), _prox() and _grad() methods.

• norm: Norm operators base class.

– norm_l1: L1-norm who implements the _eval() and _prox() methods.

– norm_l2: L2-norm who implements the _eval(), _prox() and _grad() methods.

– norm_nuclear: nuclear-norm who implements the _eval() and _prox() methods.

– norm_tv: TV-norm who implements the _eval() and _prox() methods.

• proj: Projection operators base class.

– proj_b2: Projection on the L2-ball who implements the _eval() and _prox() methods.

functions.dummy

functions.func functions.norm

functions.proj

functions.norm_l1

functions.norm_l2

functions.norm_nuclear

functions.norm_tv

functions.proj_b2

26 Chapter 3. Reference guide



pyunlocbox Documentation, Release 0.2.1

Solvers module

Solving function

pyunlocbox.solvers.solve(functions, x0, solver=None, atol=None, dtol=None, rtol=0.001,
xtol=None, maxit=200, verbosity=’LOW’)

Solve an optimization problem whose objective function is the sum of some convex functions.

This function minimizes the objective function 𝑓(𝑥) =
𝑘=𝐾∑︀
𝑘=0

𝑓𝑘(𝑥), i.e. solves argmin𝑥 𝑓(𝑥) for 𝑥 ∈ R𝑛×𝑁

where 𝑛 is the dimensionality of the data and 𝑁 the number of independent problems. It returns a dictionary
with the found solution and some informations about the algorithm execution.

Parameters functions : list of objects

A list of convex functions to minimize. These are objects who must implement
the pyunlocbox.functions.func.eval() method. The pyunlocbox.
functions.func.grad() and / or pyunlocbox.functions.func.
prox() methods are required by some solvers. Note also that some solvers can
only handle two convex functions while others may handle more. Please refer to the
documentation of the considered solver.

x0 : array_like

Starting point of the algorithm, 𝑥0 ∈ R𝑛×𝑁 . Note that if you pass a numpy array it will
be modified in place during execution to save memory. It will then contain the solution.
Be careful to pass data of the type (int, float32, float64) you want your computations to
use.

solver : solver class instance, optional

The solver algorithm. It is an object who must inherit from pyunlocbox.solvers.
solver and implement the _pre(), _algo() and _post() methods. If no solver
object are provided, a standard one will be chosen given the number of convex function
objects and their implemented methods.

atol : float, optional

The absolute tolerance stopping criterion. The algorithm stops when 𝑓(𝑥𝑡) < 𝑎𝑡𝑜𝑙
where 𝑓(𝑥𝑡) is the objective function at iteration 𝑡. Default is None.

dtol : float, optional

Stop when the objective function is stable enough, i.e. when
⃒⃒
𝑓(𝑥𝑡)− 𝑓(𝑥𝑡−1)

⃒⃒
< 𝑑𝑡𝑜𝑙.

Default is None.

rtol : float, optional

The relative tolerance stopping criterion. The algorithm stops when
⃒⃒⃒
𝑓(𝑥𝑡)−𝑓(𝑥𝑡−1)

𝑓(𝑥𝑡)

⃒⃒⃒
<

𝑟𝑡𝑜𝑙. Default is 10−3.

xtol : float, optional

Stop when the variable is stable enough, i.e. when ‖𝑥𝑡−𝑥𝑡−1‖2√
𝑛𝑁

< 𝑥𝑡𝑜𝑙. Note that
additional memory will be used to store 𝑥𝑡−1. Default is None.

maxit : int, optional

The maximum number of iterations. Default is 200.

verbosity : {‘NONE’, ‘LOW’, ‘HIGH’, ‘ALL’}, optional
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The log level : 'NONE' for no log, 'LOW' for resume at convergence, 'HIGH' for
info at all solving steps, 'ALL' for all possible outputs, including at each steps of the
proximal operators computation. Default is 'LOW'.

Returns sol : ndarray

The problem solution.

solver : str

The used solver.

crit : {‘ATOL’, ‘DTOL’, ‘RTOL’, ‘XTOL’, ‘MAXIT’}

The used stopping criterion. See above for definitions.

niter : int

The number of iterations.

time : float

The execution time in seconds.

objective : ndarray

The successive evaluations of the objective function at each iteration.

Examples

>>> import pyunlocbox
>>> import numpy as np

Define a problem:

>>> y = [4, 5, 6, 7]
>>> f = pyunlocbox.functions.norm_l2(y=y)

Solve it:

>>> x0 = np.zeros(len(y))
>>> ret = pyunlocbox.solvers.solve([f], x0, atol=1e-2, verbosity='ALL')
INFO: Dummy objective function added.
INFO: Selected solver : forward_backward

norm_l2 evaluation : 1.260000e+02
dummy evaluation : 0.000000e+00

INFO: Forward-backward method : FISTA
Iteration 1 of forward_backward :

norm_l2 evaluation : 1.400000e+01
dummy evaluation : 0.000000e+00
objective = 1.40e+01

Iteration 2 of forward_backward :
norm_l2 evaluation : 1.555556e+00
dummy evaluation : 0.000000e+00
objective = 1.56e+00

Iteration 3 of forward_backward :
norm_l2 evaluation : 3.293044e-02
dummy evaluation : 0.000000e+00
objective = 3.29e-02

Iteration 4 of forward_backward :
norm_l2 evaluation : 8.780588e-03
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dummy evaluation : 0.000000e+00
objective = 8.78e-03

Solution found after 4 iterations :
objective function f(sol) = 8.780588e-03
stopping criterion : ATOL

Verify the stopping criterion (should be smaller than atol=1e-2):

>>> np.linalg.norm(ret['sol'] - y)**2
0.008780587752251795

Show the solution (should be close to y w.r.t. the L2-norm measure):

>>> ret['sol']
array([ 4.03339154, 5.04173943, 6.05008732, 7.0584352 ])

Show the used solver:

>>> ret['solver']
'forward_backward'

Show some information about the convergence:

>>> ret['crit']
'ATOL'
>>> ret['niter']
4
>>> ret['time']
0.0012578964233398438
>>> ret['objective']
[[126.0, 0], [13.999999999999998, 0], [1.5555555555555558, 0],
[0.032930436204105726, 0], [0.0087805877522517933, 0]]

Solver class hierarchy

Solver object interface

class pyunlocbox.solvers.solver(step=1, post_step=None, post_sol=None)
Bases: object

Defines the solver object interface.

This class defines the interface of a solver object intended to be passed to the pyunlocbox.solvers.
solve() solving function. It is intended to be a base class for standard solvers which will implement the
required methods. It can also be instantiated by user code and dynamically modified for rapid testing. This class
also defines the generic attributes of all solver objects.

Parameters step : float

The gradient-descent step-size. This parameter is bounded by 0 and 2
𝛽 where 𝛽 is the

Lipschitz constant of the gradient of the smooth function (or a sum of smooth functions).
Default is 1.

post_step : function

User defined function to post-process the step size. This function is called every itera-
tion and permits the user to alter the solver algorithm. The user may start with a high
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step size and progressively lower it while the algorithm runs to accelerate the conver-
gence. The function parameters are the following : step (current step size), sol (current
problem solution), objective (list of successive evaluations of the objective function),
niter (current iteration number). The function should return a new value for step. De-
fault is to return an unchanged value.

post_sol : function

User defined function to post-process the problem solution. This function is called
every iteration and permits the user to alter the solver algorithm. Same parameter as
post_step(). Default is to return an unchanged value.

algo(objective, niter)
Call the solver iterative algorithm while allowing the user to alter it. This makes it possible to dynamically
change the step step size while the algorithm is running. See parameters documentation in pyunlocbox.
solvers.solve() documentation.

post()
Solver specific post-processing. Mainly used to delete references added during initialization so that the
garbage collector can free the memory. See parameters documentation in pyunlocbox.solvers.
solve() documentation.

pre(functions, x0)
Solver specific initialization. See parameters documentation in pyunlocbox.solvers.solve()
documentation.

Forward-backward proximal splitting algorithm

class pyunlocbox.solvers.forward_backward(method=’FISTA’, lambda_=1, *args, **kwargs)
Bases: pyunlocbox.solvers.solver

Forward-backward proximal splitting algorithm.

This algorithm solves convex optimization problems composed of the sum of a smooth and a non-smooth func-
tion.

See generic attributes descriptions of the pyunlocbox.solvers.solver base class.

Parameters method : {‘FISTA’, ‘ISTA’}, optional

The method used to solve the problem. It can be ‘FISTA’ or ‘ISTA’. Note that while
FISTA is much more time efficient, it is less memory efficient. Default is ‘FISTA’.

lambda_ : float, optional

The update term weight for ISTA. It should be between 0 and 1. Default is 1.

Notes

This algorithm requires one function to implement the pyunlocbox.functions.func.prox() method
and the other one to implement the pyunlocbox.functions.func.grad() method.

See [BT09a] for details about the algorithm.
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Examples

>>> from pyunlocbox import functions, solvers
>>> import numpy as np
>>> y = [4, 5, 6, 7]
>>> x0 = np.zeros(len(y))
>>> f1 = functions.norm_l2(y=y)
>>> f2 = functions.dummy()
>>> solver = solvers.forward_backward(method='FISTA', lambda_=1, step=0.5)
>>> ret = solvers.solve([f1, f2], x0, solver, atol=1e-5)
Solution found after 12 iterations :

objective function f(sol) = 4.135992e-06
stopping criterion : ATOL

>>> ret['sol']
array([ 3.99927529, 4.99909411, 5.99891293, 6.99873176])

Douglas-Rachford proximal splitting algorithm

class pyunlocbox.solvers.douglas_rachford(lambda_=1, *args, **kwargs)
Bases: pyunlocbox.solvers.solver

Douglas-Rachford proximal splitting algorithm.

This algorithm solves convex optimization problems composed of the sum of two non-smooth (or smooth)
functions.

See generic attributes descriptions of the pyunlocbox.solvers.solver base class.

Parameters lambda_ : float, optional

The update term weight. It should be between 0 and 1. Default is 1.

Notes

This algorithm requires the two functions to implement the pyunlocbox.functions.func.prox()
method.

See [CP07] for details about the algorithm.

Examples

>>> from pyunlocbox import functions, solvers
>>> import numpy as np
>>> y = [4, 5, 6, 7]
>>> x0 = np.zeros(len(y))
>>> f1 = functions.norm_l2(y=y)
>>> f2 = functions.dummy()
>>> solver = solvers.douglas_rachford(lambda_=1, step=1)
>>> ret = solvers.solve([f1, f2], x0, solver, atol=1e-5)
Solution found after 8 iterations :

objective function f(sol) = 2.927052e-06
stopping criterion : ATOL

>>> ret['sol']
array([ 3.99939034, 4.99923792, 5.99908551, 6.99893309])
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Generalized-Forward-backward proximal splitting algorithm

class pyunlocbox.solvers.generalized_forward_backward(lambda_=1, *args, **kwargs)
Bases: pyunlocbox.solvers.solver

Generalized forward-backward proximal splitting algorithm.

This algorithm solves convex optimization problems composed of the sum of any number of non-smooth (or
smooth) functions.

See generic attributes descriptions of the pyunlocbox.solvers.solver base class.

Parameters lambda_ : float, optional

A relaxation parameter bounded by 0 and 1. Default is 1.

Notes

This algorithm requires each function to either implement the pyunlocbox.functions.func.prox()
method or the pyunlocbox.functions.func.grad() method.

See [RFPeyre13] for details about the algorithm.

Examples

>>> from pyunlocbox import functions, solvers
>>> import numpy as np
>>> y = [0.01, 0.2, 8, 0.3, 0 , 0.03, 7]
>>> x0 = np.zeros(len(y))
>>> f1 = functions.norm_l2(y=y)
>>> f2 = functions.norm_l1()
>>> solver = solvers.generalized_forward_backward(lambda_=1, step=0.5)
>>> ret = solvers.solve([f1, f2], x0, solver)
Solution found after 2 iterations :

objective function f(sol) = 1.463100e+01
stopping criterion : RTOL

>>> ret['sol']
array([ 0. , 0. , 7.5, 0. , 0. , 0. , 6.5])

This module implements solver objects who minimize an objective function. Call solve() to solve your convex op-
timization problem using your instantiated solver and functions objects. The solver base class defines the interface
of all solver objects. The specialized solver objects inherit from it and implement the class methods. The following
solvers are included :

• forward_backward: Forward-backward proximal splitting algorithm.

• douglas_rachford: Douglas-Rachford proximal splitting algorithm.

• generalized_forward_backward: Generalized Forward-Backward.
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solvers.douglas_rachford

solvers.solver solvers.forward_backward

solvers.generalized_forward_backward

Operators module

Gradient Operators

pyunlocbox.operators.grad(x, dim=2, **kwargs)
Returns the gradient of the array

Parameters dim : int

Dimension of the grad

wx : int

wy : int

wz : int

wt : int

Weights to apply on each axis

Returns dx, dy, dz, dt : ndarrays

Gradients following each axes, only the necessary ones are returned

Examples

>>> import pyunlocbox
>>> import numpy as np
>>> x = np.arange(16).reshape(4, 4)
>>> dx, dy = pyunlocbox.operators.grad(x)

Divergence Operators

pyunlocbox.operators.div(*args, **kwargs)
Returns the divergence of the array
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Parameters dx : array_like

dy : array_like

dz : array_like

dt : array_like

Arrays to operate on

Returns x : array_like

Divergence vector

Examples

>>> import pyunlocbox
>>> import numpy as np
>>> x = np.arange(16).reshape(4, 4)
>>> dx, dy = pyunlocbox.operators.grad(x)
>>> divx = pyunlocbox.operators.div(dx, dy)

This module implements operators functions :

• grad() Gradient function for up to 4 dimensions

• div() Divergence function for up to 4 dimensions
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Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/epfl-lts2/pyunlocbox/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

35

https://github.com/epfl-lts2/pyunlocbox/issues


pyunlocbox Documentation, Release 0.2.1

Write Documentation

pyunlocbox could always use more documentation, whether as part of the official pyunlocbox docs, in docstrings, or
even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/epfl-lts2/pyunlocbox/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pyunlocbox for local development.

1. Fork the pyunlocbox repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/pyunlocbox.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv pyunlocbox
$ cd pyunlocbox/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 pyunlocbox tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.
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Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check https://travis-ci.org/epfl-lts2/
pyunlocbox/pull_requests and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_pyunlocbox
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CHAPTER 5

History

0.2.3 (2015-02-06)

Bug fix version. Still experimental.

Bug fixes :

• prox tv 2d has been fixed

0.2.2 (2015-01-16)

New feature version. Still experimental.

New Features:

• norm_tv has been added with gradient, div, evaluation and prox.

• Module signals has been added.

• A demo for douglas rachford is also now presenta.

0.2.1 (2014-08-20)

Bug fix version. Still experimental.

Bug fixes :

• Avoid complex casting to real

• Do not stop iterating if the objective function stays at zero
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0.2.0 (2014-08-04)

Second usable version, available on GitHub and released on PyPI. Still experimental.

New features :

• Douglas-Rachford splitting algorithm

• Projection on the L2-ball for tight and non tight frames

• Compressed sensing tutorial using L2-ball, L2-norm and Douglas-Rachford

• Automatic solver selection

Infrastructure :

• Unit tests for all functions and solvers

• Continuous integration testing on Python 2.6, 2.7, 3.2, 3.3 and 3.4

0.1.0 (2014-06-08)

First usable version, available on GitHub and released on PyPI. Still experimental.

Features :

• Forward-backward splitting algorithm

• L1-norm function (eval and prox)

• L2-norm function (eval, grad and prox)

• TV-norm function (eval, grad, div and prox)

• Least square problem tutorial using L2-norm and forward-backward

• Compressed sensing tutorial using L1-norm, L2-norm and forward-backward

Infrastructure :

• Sphinx generated documentation using Numpy style docstrings

• Documentation hosted on Read the Docs

• Code hosted on GitHub

• Package hosted on PyPI

• Code checked by flake8

• Docstring and tutorial examples checked by doctest (as a test suite)

• Unit tests for functions module (as a test suite)

• All test suites executed in Python 2.6, 2.7 and 3.2 virtualenvs by tox

• Distributed automatic testing on Travis CI continuous integration platform
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References
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Indices and tables

• genindex

• modindex

• search
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