
pyunlocbox Documentation
Release 0.1.0

EPFL LTS2

July 29, 2016

Contents

1 About 1
1.1 Features . 1
1.2 Installation . 1
1.3 Authors . 2

2 Tutorials 3
2.1 Simple least square problem . 3
2.2 Compressed sensing using forward-backward . 5

3 Reference guide 11
3.1 Toolbox overview . 11
3.2 Functions module . 11
3.3 Solvers module . 15

4 Contributing 21
4.1 Types of Contributions . 21
4.2 Get Started! . 22
4.3 Pull Request Guidelines . 22
4.4 Tips . 23

5 History 25
5.1 0.1.0 (2014-06-08) . 25

6 Indices and tables 27

Python Module Index 29

i

ii

CHAPTER 1

About

PyUNLocBoX is a convex optimization toolbox using proximal splitting methods implemented in Python. It is a free
software distributed under the BSD license and is a port of the Matlab UNLocBoX toolbox.

• Code : https://github.com/epfl-lts2/pyunlocbox

• Documentation : http://pyunlocbox.readthedocs.org

• PyPI package : https://pypi.python.org/pypi/pyunlocbox

• Travis continuous integration : https://travis-ci.org/epfl-lts2/pyunlocbox

• UNLocBoX matlab toolbox : http://unlocbox.sourceforge.net

1.1 Features

• Solvers

– Forward-backward splitting algorithm

• Proximal operators

– L1-norm

– L2-norm

1.2 Installation

System-wide installation:

pip install pyunlocbox

Installation in an isolated virtual environment:

$ mkvirtualenv --system-site-packages pyunlocbox
$ pip install pyunlocbox

You need virtualenvwrapper to run this command. The --system-site-packages option could be useful if you
want to use a shared system installation of numpy and matplotlib. Their building and installation requires quite some
dependencies.

Another way is to manually download from PyPI and unpack the package then install with:

1

https://github.com/epfl-lts2/pyunlocbox
http://pyunlocbox.readthedocs.org
https://pypi.python.org/pypi/pyunlocbox
https://travis-ci.org/epfl-lts2/pyunlocbox
http://unlocbox.sourceforge.net

pyunlocbox Documentation, Release 0.1.0

$ python setup.py install

Execute the project test suite once to make sure you have a working install:

$ python setup.py test

1.3 Authors

PyUNLocBoX was started in 2014 as an academic project for research purpose of the LTS2 laboratory from EPFL.
See our website at http://lts2www.epfl.ch.

Development lead :

• Michaël Defferrard from EPFL LTS2 <michael.defferrard@epfl.ch>

• Nathanaël Perraudin from EPFL LTS2 <nathanael.perraudin@epfl.ch>

Contributors :

• None yet. Why not be the first ?

2 Chapter 1. About

http://lts2www.epfl.ch
mailto:michael.defferrard@epfl.ch
mailto:nathanael.perraudin@epfl.ch

CHAPTER 2

Tutorials

The following are some tutorials which show and explain how to use the toolbox to solve some real problems. They
goes in increasing degree of difficulty. If you have never used the toolbox before, you are encouraged to follow them
in order as they build one upon the other.

2.1 Simple least square problem

This simplistic example is only meant to demonstrate the basic workflow of the toolbox. Here we want to solve a least
square problem, i.e. we want the solution to converge to the original signal without any constraint. Lets define this
signal by :

>>> y = [4, 5, 6, 7]

The first function to minimize is the sum of squared distances between the current signal x and the original y. For this
purpose, we instantiate an L2-norm object :

>>> from pyunlocbox import functions
>>> f1 = functions.norm_l2(y=y)

This standard function object provides the eval(), grad() and prox() methods that will be useful to the solver.
We can evaluate them at any given point :

>>> f1.eval([0, 0, 0, 0])
126
>>> f1.grad([0, 0, 0, 0])
array([-8, -10, -12, -14])
>>> f1.prox([0, 0, 0, 0], 1)
array([2.66666667, 3.33333333, 4. , 4.66666667])

We need a second function to minimize, which usually describes a constraint. As we have no constraint, we just define
a dummy function object by hand. We have to define the _eval() and _grad() methods as the solver we will use
requires it :

>>> f2 = functions.func()
>>> f2._eval = lambda x: 0
>>> f2._grad = lambda x: 0

Note: We could also have used the pyunlocbox.functions.dummy function object.

We can now instantiate the solver object :

3

pyunlocbox Documentation, Release 0.1.0

>>> from pyunlocbox import solvers
>>> solver = solvers.forward_backward()

And finally solve the problem :

>>> x0 = [0, 0, 0, 0]
>>> ret = solvers.solve([f2, f1], x0, solver, absTol=1e-5, verbosity='high')
INFO: Forward-backward method : FISTA
Iteration 1 : objective = 1.40e+01, relative = 8.00e+00
Iteration 2 : objective = 1.56e+00, relative = 8.00e+00
Iteration 3 : objective = 3.29e-02, relative = 4.62e+01
Iteration 4 : objective = 8.78e-03, relative = 2.75e+00
Iteration 5 : objective = 6.39e-03, relative = 3.74e-01
Iteration 6 : objective = 5.71e-04, relative = 1.02e+01
Iteration 7 : objective = 1.73e-05, relative = 3.21e+01
Iteration 8 : objective = 6.11e-05, relative = 7.17e-01
Iteration 9 : objective = 1.21e-05, relative = 4.04e+00
Iteration 10 : objective = 7.46e-09, relative = 1.62e+03
Solution found after 10 iterations :

objective function f(sol) = 7.460428e-09
last relative objective improvement : 1.624424e+03
stopping criterion : ABS_TOL

The solving function returns several values, one is the found solution :

>>> ret['sol']
array([3.99996922, 4.99996153, 5.99995383, 6.99994614])

Another one is the value returned by each function objects at each iteration. As we passed two function objects
(L2-norm and dummy), the objective is a 2 by 11 (10 iterations plus the evaluation at x0) ndarray. Lets plot a
convergence graph out of it :

>>> import numpy as np
>>> import matplotlib, sys
>>> cmd_backend = 'matplotlib.use("AGG")'
>>> _ = eval(cmd_backend) if 'matplotlib.pyplot' not in sys.modules else 0
>>> import matplotlib.pyplot as plt
>>> objective = np.array(ret['objective'])
>>> _ = plt.figure()
>>> _ = plt.semilogy(objective[:, 1], 'x', label='L2-norm')
>>> _ = plt.semilogy(objective[:, 0], label='Dummy')
>>> _ = plt.semilogy(np.sum(objective, axis=1), label='Global objective')
>>> _ = plt.grid(True)
>>> _ = plt.title('Convergence')
>>> _ = plt.legend(numpoints=1)
>>> _ = plt.xlabel('Iteration number')
>>> _ = plt.ylabel('Objective function value')
>>> _ = plt.savefig('doc/tutorials/simple_convergence.pdf')
>>> _ = plt.savefig('doc/tutorials/simple_convergence.png')

The below graph shows an exponential convergence of the objective function. The global objective is obviously only
composed of the L2-norm as the dummy function object was defined to always evaluate to 0 (f2._eval = lambda
x: 0).

4 Chapter 2. Tutorials

pyunlocbox Documentation, Release 0.1.0

0 2 4 6 8 10
Iteration number

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103
Ob

je
ct

iv
e

fu
nc

tio
n

va
lu

e
Convergence

L2-norm
Dummy
Global objective

2.2 Compressed sensing using forward-backward

This tutorial presents a compressed sensing problem solved by the forward-backward splitting algorithm. The problem
can be expressed as follow :

argmin𝑥 ||𝐴𝑥− 𝑦||2 + 𝜏 ||𝑥||1

where y are the measurements and A is the measurement matrix.

We first declare the signal size N and the sparsity level K :

>>> N = 5000
>>> K = 100

The number of measurements M is computed with respect to the size of the signal N and the sparsity level K :

>>> import numpy as np
>>> R = max(4, np.ceil(np.log(N)))
>>> M = K * R
>>> print('Number of measurements : %d' % (M,))
Number of measurements : 900
>>> print('Compression ratio : %3.2f' % (N/M,))
Compression ratio : 5.56

2.2. Compressed sensing using forward-backward 5

pyunlocbox Documentation, Release 0.1.0

Note: With the above defined number of measurements, the algorithm is supposed to very often perform a perfect
reconstruction.

We now generate a random measurement matrix :

>>> np.random.seed(1) # Reproducible results.
>>> A = np.random.standard_normal((M, N))

And create the K sparse signal :

>>> x = np.zeros(N)
>>> I = np.random.permutation(N)
>>> x[I[0:K]] = np.random.standard_normal(K)
>>> x = x / np.linalg.norm(x)

We are now able to compute the measured signal :

>>> y = np.dot(A, x)

The first objective function to minimize is defined by :

𝑓1(𝑥) = ||𝑥||1

which is an L1-norm. The L1-norm function object is part of the toolbox standard function objects and can be
instantiated as follow (the regularization parameter 𝜏 is implicitly set to 1.0):

>>> from pyunlocbox import functions
>>> f1 = functions.norm_l1(verbosity='none')

Note: You can also pass a verbosity of ’low’ or ’high’ if you want some informations about the norm evaluation.
Please see the documentation of the norm function object for more information on how to instantiate norm objects
(pyunlocbox.functions.norm).

The second objective function to minimize is defined by :

𝑓2(𝑥) = ||𝐴𝑥− 𝑏||22

which is an L2-norm that is also part of the standard function objects. It can be instantiated as follow :

>>> f2 = functions.norm_l2(y=y, A=A, verbosity='none')

or alternatively as follow :

>>> A_ = lambda x: np.dot(A, x)
>>> At_ = lambda x: np.dot(np.transpose(A), x)
>>> f3 = functions.norm_l2(y=y, A=A_, At=At_, verbosity='none')

Note: In this case the forward and adjoint operators were passed as real operators not as matrices.

A third alternative would be to define the function object by hand :

>>> f4 = functions.func()
>>> f4.grad = lambda x: 2.0 * np.dot(np.transpose(A), np.dot(A, x) - y)
>>> f4.eval = lambda x: np.linalg.norm(np.dot(A, x) - y)**2

6 Chapter 2. Tutorials

pyunlocbox Documentation, Release 0.1.0

Note: The three alternatives to instantiate the function objects (f2, f3 and f4) are strictly equivalent and will give the
exact same results.

Now that the two function objects to minimize (the L1-norm and the L2-norm) are instantiated, we can instantiate the
solver object. The step size for optimal convergence is 1

𝛽 where 𝛽 is given by

𝛽 = 2 · norm(𝐴)2

To solve this problem, we use the forward-backward splitting algorithm which is instantiated as follow :

>>> gamma = 0.5 / np.linalg.norm(A, ord=2)**2
>>> from pyunlocbox import solvers
>>> solver = solvers.forward_backward(method='FISTA', gamma=gamma)

Note: See the solver documentation for more information (pyunlocbox.solvers.forward_backward).

The problem is then solved by executing the solver on the objective functions, after the setting of a starting point x0 :

>>> x0 = np.zeros(N)
>>> ret = solvers.solve([f1, f2], x0, solver, relTol=1e-4, maxIter=300)
Solution found after 176 iterations :

objective function f(sol) = 8.221302e+00
last relative objective improvement : 8.363264e-05
stopping criterion : REL_TOL

Note: See the solving function documentation for more information on the parameters and the returned values
(pyunlocbox.solvers.forward_backward).

Lets display the results :

>>> import matplotlib, sys
>>> cmd_backend = 'matplotlib.use("AGG")'
>>> _ = eval(cmd_backend) if 'matplotlib.pyplot' not in sys.modules else 0
>>> import matplotlib.pyplot as plt
>>> _ = plt.figure()
>>> _ = plt.plot(x, 'o', label='Original')
>>> _ = plt.plot(ret['sol'], 'xr', label='Reconstructed')
>>> _ = plt.grid(True)
>>> _ = plt.title('Achieved reconstruction')
>>> _ = plt.legend(numpoints=1)
>>> _ = plt.xlabel('Signal dimension number')
>>> _ = plt.ylabel('Signal value')
>>> _ = plt.savefig('doc/tutorials/compressed_sensing_1_results.pdf')
>>> _ = plt.savefig('doc/tutorials/compressed_sensing_1_results.png')

2.2. Compressed sensing using forward-backward 7

pyunlocbox Documentation, Release 0.1.0

0 1000 2000 3000 4000 5000
Signal dimension number

0.3

0.2

0.1

0.0

0.1

0.2

0.3
Si

gn
al

 v
al

ue
Achieved reconstruction

Original
Reconstructed

The above figure shows a good reconstruction which is both sparse (thanks to the L1-norm objective) and close to the
measurements (thanks to the L2-norm objective).

We can also display the convergence of the two objective functions :

>>> objective = np.array(ret['objective'])
>>> _ = plt.figure()
>>> _ = plt.semilogy(objective[:, 0], label='L1-norm objective')
>>> _ = plt.semilogy(objective[:, 1], label='L2-norm objective')
>>> _ = plt.semilogy(np.sum(objective, axis=1), label='Global objective')
>>> _ = plt.grid(True)
>>> _ = plt.title('Convergence')
>>> _ = plt.legend()
>>> _ = plt.xlabel('Iteration number')
>>> _ = plt.ylabel('Objective function value')
>>> _ = plt.savefig('doc/tutorials/compressed_sensing_1_convergence.pdf')
>>> _ = plt.savefig('doc/tutorials/compressed_sensing_1_convergence.png')

8 Chapter 2. Tutorials

pyunlocbox Documentation, Release 0.1.0

0 20 40 60 80 100 120 140 160 180
Iteration number

10-2

10-1

100

101

102

103
Ob

je
ct

iv
e

fu
nc

tio
n

va
lu

e
Convergence

L1-norm objective
L2-norm objective
Global objective

2.2. Compressed sensing using forward-backward 9

pyunlocbox Documentation, Release 0.1.0

10 Chapter 2. Tutorials

CHAPTER 3

Reference guide

3.1 Toolbox overview

PyUNLocBoX is a convex optimization toolbox using proximal splitting methods. It is a port of the Matlab UN-
LocBoX toolbox.

The toolbox is organized around two classes hierarchies : the functions and the solvers. Instantiated
functions represent convex functions to optimize. Instantiated solvers represent solving algorithms. The
pyunlocbox.solvers.solve() solving function takes as parameters a solver object and some function ob-
jects to actually solve the optimization problem.

The pyunlocbox package is divided into the following modules :

• pyunlocbox.solvers: problem solvers, implement the solvers class hierarchy and the solving function

• pyunlocbox.functions: functions to be passed to the solvers, implement the functions class hierarchy

Following is a typical usage example who solves an optimization problem composed by the sum of two convex
functions. The functions and solver objects are first instantiated with the desired parameters. The problem is then
solved by a call to the solving function.

>>> import pyunlocbox
>>> f1 = pyunlocbox.functions.norm_l2(y=[4, 5, 6, 7])
>>> f2 = pyunlocbox.functions.dummy()
>>> solver = pyunlocbox.solvers.forward_backward()
>>> ret = pyunlocbox.solvers.solve([f1, f2], [0, 0, 0, 0], solver, absTol=1e-5)
Solution found after 10 iterations :

objective function f(sol) = 7.460428e-09
last relative objective improvement : 1.624424e+03
stopping criterion : ABS_TOL

>>> ret['sol']
array([3.99996922, 4.99996153, 5.99995383, 6.99994614])

3.2 Functions module

3.2.1 Function objects

Interface

class pyunlocbox.functions.func(verbosity=’none’)
Bases: object

11

pyunlocbox Documentation, Release 0.1.0

This class defines the function object interface.

It is intended to be a base class for standard functions which will implement the required methods. It can also
be instantiated by user code and dynamically modified for rapid testing. The instanced objects are meant to be
passed to the pyunlocbox.solvers.solve() solving function.

Parameters verbosity : {‘none’, ‘low’, ‘high’}, optional

The log level : ’none’ for no log, ’low’ for resume at convergence, ’high’ to for
all steps. Default is ’low’.

Examples

Lets define a parabola as an example of the manual implementation of a function object :

>>> import pyunlocbox
>>> f = pyunlocbox.functions.func()
>>> f._eval = lambda x : x**2
>>> f._grad = lambda x : 2*x
>>> x = [1, 2, 3, 4]
>>> f.eval(x)
array([1, 4, 9, 16])
>>> f.grad(x)
array([2, 4, 6, 8])

eval(x)
Function evaluation.

Parameters x : array_like

The evaluation point.

Returns z : float

The objective function evaluated at x.

Notes

This method is required by the pyunlocbox.solvers.solve() solving function to evaluate the
objective function.

grad(x)
Function gradient.

Parameters x : array_like

The evaluation point.

Returns z : ndarray

The objective function gradient evaluated at x.

Notes

This method is required by some solvers.

prox(x, T)
Function proximal operator.

12 Chapter 3. Reference guide

pyunlocbox Documentation, Release 0.1.0

Parameters x : array_like

The evaluation point.

T : float

The regularization parameter.

Returns z : ndarray

The proximal operator evaluated at x.

Notes

This method is required by some solvers.

The proximal operator is defined by prox𝑓,𝛾(𝑥) = min𝑧
1
2 ||𝑥− 𝑧||22 + 𝛾𝑓(𝑧)

Dummy function

class pyunlocbox.functions.dummy(verbosity=’none’)
Bases: pyunlocbox.functions.func

Dummy function object.

This can be used as a second function object when there is only one function to minimize. The eval(),
prox() and grad() methods then all return 0.

See generic attributes descriptions of the pyunlocbox.functions.func base class.

Examples

>>> import pyunlocbox
>>> f = pyunlocbox.functions.dummy(verbosity='low')
>>> x = [1, 2, 3, 4]
>>> f.eval(x)
dummy evaluation : 0.000000e+00
0
>>> f.prox(x, 1)
array([0., 0., 0., 0.])
>>> f.grad(x)
array([0., 0., 0., 0.])

3.2.2 Norm function class hierarchy

Base class

class pyunlocbox.functions.norm(lambda_=1, y=0, w=1, A=None, At=None, tight=True, nu=1,
*args, **kwargs)

Bases: pyunlocbox.functions.func

Base class which defines the attributes of the norm objects.

See generic attributes descriptions of the pyunlocbox.functions.func base class.

Parameters lambda_ : float, optional

3.2. Functions module 13

pyunlocbox Documentation, Release 0.1.0

Regularization parameter 𝜆. Default is 1.

y : array_like, optional

Measurements. Default is 0.

w : array_like, optional

Weights for a weighted norm. Default is 1.

A : function or ndarray, optional

The forward operator. Default is the identity, 𝐴(𝑥) = 𝑥. If A is an ndarray, it will be
converted to the operator form.

At : function or ndarray, optional

The adjoint operator. If At is an ndarray, it will be converted to the operator form.
If A is an ndarray, default is the transpose of A. If A is a function, default is A,
𝐴𝑡(𝑥) = 𝐴(𝑥).

tight : bool, optional

True if A is a tight frame, False otherwise. Default is True.

nu : float, optional

Bound on the norm of the operator A, i.e. ||𝐴(𝑥)||2 ≤ 𝜈||𝑥||2. Default is 1.

L1-norm

class pyunlocbox.functions.norm_l1(lambda_=1, y=0, w=1, A=None, At=None, tight=True, nu=1,
*args, **kwargs)

Bases: pyunlocbox.functions.norm

L1-norm function object.

See generic attributes descriptions of the pyunlocbox.functions.norm base class.

Notes

•The L-1 norm of the vector x is given by 𝜆||𝑤 · (𝐴(𝑥)− 𝑦)||1
•The L1-norm proximal operator evaluated at x is given by min𝑧

1
2 ||𝑥− 𝑧||22 + 𝛾||𝑤 · (𝐴(𝑧)− 𝑦)||1 where

𝛾 = 𝜆 · 𝑇 This is simply a soft thresholding.

Examples

>>> import pyunlocbox
>>> f = pyunlocbox.functions.norm_l1(verbosity='low')
>>> f.eval([1, 2, 3, 4])
norm_l1 evaluation : 1.000000e+01
10
>>> f.prox([1, 2, 3, 4], 1)
array([0., 1., 2., 3.])

14 Chapter 3. Reference guide

pyunlocbox Documentation, Release 0.1.0

L2-norm

class pyunlocbox.functions.norm_l2(lambda_=1, y=0, w=1, A=None, At=None, tight=True, nu=1,
*args, **kwargs)

Bases: pyunlocbox.functions.norm

L2-norm function object.

See generic attributes descriptions of the pyunlocbox.functions.norm base class.

Notes

•The squared L-2 norm of the vector x is given by 𝜆||𝑤 · (𝐴(𝑥)− 𝑦)||22
•The squared L2-norm proximal operator evaluated at x is given by min𝑧

1
2 ||𝑥− 𝑧||22 + 𝛾||𝑤 · (𝐴(𝑧)− 𝑦)||22

where 𝛾 = 𝜆 · 𝑇

•The squared L2-norm gradient evaluated at x is given by 2𝜆 ·𝐴𝑡(𝑤 · (𝐴(𝑥)− 𝑦))

Examples

>>> import pyunlocbox
>>> f = pyunlocbox.functions.norm_l2(verbosity='low')
>>> x = [1, 2, 3, 4]
>>> f.eval(x)
norm_l2 evaluation : 3.000000e+01
30
>>> f.prox(x, 1)
array([0.33333333, 0.66666667, 1. , 1.33333333])
>>> f.grad(x)
array([2, 4, 6, 8])

This module implements function objects which are then passed to solvers. The func base class defines the interface
whereas specialised classes who inherit from it implement the methods. These classes include :

• dummy: A dummy function object which returns 0 for the _eval(), _prox() and _grad() methods.

• norm: Norm base class.

– norm_l1: L1-norm who implements the _eval() and _prox() methods.

– norm_l2: L2-norm who implements the _eval(), _prox() and _grad() methods.

3.3 Solvers module

3.3.1 Solving function

pyunlocbox.solvers.solve(functions, x0, solver=None, relTol=0.001, absTol=-inf,
convergence_speed=-inf, maxIter=200, verbosity=’low’)

Solve an optimization problem whose objective function is the sum of some convex functions.

This function minimizes the objective function 𝑓(𝑥) =
𝑘=𝑀∑︀
𝑘=0

𝑓𝑘(𝑥), i.e. solves argmin𝑥
𝑘=𝑀∑︀
𝑘=0

𝑓𝑘(𝑥) for 𝑥 ∈ R𝑁

using whatever algorithm. It returns a dictionary with the found solution and some informations about the
algorithm execution.

3.3. Solvers module 15

pyunlocbox Documentation, Release 0.1.0

Parameters functions : list of objects

A list of convex functions to minimize. These are objects who
must implement the pyunlocbox.functions.func.eval()
method. The pyunlocbox.functions.func.grad() and / or
pyunlocbox.functions.func.prox() methods are required by some
solvers. Note also that some solvers can only handle two convex functions while others
may handle more. Please refer to the documentation of the considered solver.

x0 : array_like

Starting point of the algorithm, 𝑥0 ∈ R𝑁 .

solver : solver class instance, optional

The solver algorithm. It is an object who must inherit from
pyunlocbox.solvers.solver and implement the _pre(), _algo()
and _post() methods. If no solver object are provided, a standard one will be chosen
given the number of convex function objects and their implemented methods.

relTol : float, optional

The convergence (relative tolerance) stopping criterion. The algorithm stops if
𝑛(𝑘)−𝑛(𝑘−1)

𝑛(𝑘) < 𝑟𝑒𝑙𝑡𝑜𝑙 where 𝑛(𝑘) = 𝑓(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥) is the objective function at
iteration 𝑘. Default is 10−3.

absTol : float, optional

The absolute tolerance stopping criterion. The algorithm stops if 𝑛(𝑘) < 𝑎𝑏𝑠𝑡𝑜𝑙. De-
fault is minus infinity.

convergence_speed : float, optional

The minimum tolerable convergence speed of the objective function. The algorithm
stops if n(k-1) - n(k) < convergence_speed. Default is minus infinity (i.e. the objective
function may even increase).

maxIter : int, optional

The maximum number of iterations. Default is 200.

verbosity : {‘low’, ‘high’, ‘none’}, optional

The log level : ’none’ for no log, ’low’ for resume at convergence, ’high’ to for
all steps. Default is ’low’.

Returns sol : ndarray

problem solution

solver : str

used solver

niter : int

number of iterations

time : float

execution time in seconds

eval : float

final evaluation of the objective function 𝑓(𝑥)

crit : {‘MAX_IT’, ‘ABS_TOL’, ‘REL_TOL’, ‘CONV_SPEED’}

16 Chapter 3. Reference guide

pyunlocbox Documentation, Release 0.1.0

Used stopping criterion. ‘MAX_IT’ if the maximum number of iterations maxIter is
reached, ‘ABS_TOL’ if the objective function value is smaller than absTol, ‘REL_TOL’
if the relative objective function improvement was smaller than relTol (i.e. the algo-
rithm converged), ‘CONV_SPEED’ if the objective function improvement is smaller
than convergence_speed.

rel : float

relative objective improvement at convergence

objective : ndarray

successive evaluations of the objective function at each iteration

Examples

Simple example showing the automatic selection of a solver (and a second function) :

>>> import pyunlocbox
>>> f1 = pyunlocbox.functions.norm_l2(y=[4, 5, 6, 7])
>>> ret = pyunlocbox.solvers.solve([f1], [0, 0, 0, 0], absTol=1e-5)
INFO: Added dummy objective function.
INFO: Selected solver : forward_backward
Solution found after 10 iterations :

objective function f(sol) = 7.460428e-09
last relative objective improvement : 1.624424e+03
stopping criterion : ABS_TOL

>>> ret['sol']
array([3.99996922, 4.99996153, 5.99995383, 6.99994614])

3.3.2 Solver class hierarchy

Solver object interface

class pyunlocbox.solvers.solver(gamma=1, post_gamma=None, post_sol=None)
Bases: object

Defines the solver object interface.

This class defines the interface of a solver object intended to be passed to the
pyunlocbox.solvers.solve() solving function. It is intended to be a base class for standard
solvers which will implement the required methods. It can also be instantiated by user code and dynamically
modified for rapid testing. This class also defines the generic attributes of all solver objects.

Parameters gamma : float

The step size. This parameter is upper bounded by 1
𝛽 where the second convex function

(gradient ?) is 𝛽 Lipschitz continuous. Default is 1.

post_gamma : function

User defined function to post-process the step size. This function is called every it-
eration and permits the user to alter the solver algorithm. The user may start with
a high step size and progressively lower it while the algorithm runs to accelerate the
convergence. The function parameters are the following : gamma (current step size),
sol (current problem solution), objective (list of successive evaluations of the objective
function), niter (current iteration number). The function should return a new value for
gamma. Default is to return an unchanged value.

3.3. Solvers module 17

pyunlocbox Documentation, Release 0.1.0

post_sol : function

User defined function to post-process the problem solution. This function is called
every iteration and permits the user to alter the solver algorithm. Same parameter as
post_gamma(). Default is to return an unchanged value.

algo(objective, niter)
Call the solver iterative algorithm while allowing the user to alter it. This makes it possible to dynam-
ically change the gamma step size while the algorithm is running. See parameters documentation in
pyunlocbox.solvers.solve() documentation.

post(verbosity)
Solver specific post-processing. See parameters documentation in pyunlocbox.solvers.solve()
documentation.

pre(functions, x0, verbosity)
Solver specific initialization. See parameters documentation in pyunlocbox.solvers.solve()
documentation.

Forward-backward proximal splitting algorithm

class pyunlocbox.solvers.forward_backward(method=’FISTA’, lambda_=1, *args, **kwargs)
Bases: pyunlocbox.solvers.solver

Forward-backward splitting algorithm.

This algorithm solves convex optimization problems composed of the sum of two objective functions.

See generic attributes descriptions of the pyunlocbox.solvers.solver base class.

Parameters method : {‘FISTA’, ‘ISTA’}, optional

the method used to solve the problem. It can be ‘FISTA’ or ‘ISTA’. Default is ‘FISTA’.

lambda_ : float, optional

the update term weight for ISTA. It should be between 0 and 1. Default is 1.

Notes

This algorithm requires one function to implement the pyunlocbox.functions.func.prox() method
and the other one to implement the pyunlocbox.functions.func.grad() method.

Examples

>>> from pyunlocbox import functions, solvers
>>> import numpy as np
>>> y = [4, 5, 6, 7]
>>> x0 = np.zeros(len(y))
>>> f1 = functions.norm_l2(y=y)
>>> f2 = functions.dummy()
>>> solver = solvers.forward_backward(method='FISTA', lambda_=1, gamma=1)
>>> ret = solvers.solve([f1, f2], x0, solver, absTol=1e-5)
Solution found after 10 iterations :

objective function f(sol) = 7.460428e-09
last relative objective improvement : 1.624424e+03
stopping criterion : ABS_TOL

18 Chapter 3. Reference guide

pyunlocbox Documentation, Release 0.1.0

>>> ret['sol']
array([3.99996922, 4.99996153, 5.99995383, 6.99994614])

This module implements solver objects who minimize an objective function. Call solve() to solve your convex op-
timization problem using your instantiated solver and functions objects. The solver base class defines the interface
of all solver objects. The specialized solver objects inherit from it and implement the class methods. The following
solvers are included :

• forward_backward: Forward-backward proximal splitting algorithm.

3.3. Solvers module 19

pyunlocbox Documentation, Release 0.1.0

20 Chapter 3. Reference guide

CHAPTER 4

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

4.1 Types of Contributions

4.1.1 Report Bugs

Report bugs at https://github.com/epfl-lts2/pyunlocbox/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

4.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

4.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

4.1.4 Write Documentation

pyunlocbox could always use more documentation, whether as part of the official pyunlocbox docs, in docstrings, or
even on the web in blog posts, articles, and such.

4.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/epfl-lts2/pyunlocbox/issues.

If you are proposing a feature:

21

https://github.com/epfl-lts2/pyunlocbox/issues
https://github.com/epfl-lts2/pyunlocbox/issues

pyunlocbox Documentation, Release 0.1.0

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.2 Get Started!

Ready to contribute? Here’s how to set up pyunlocbox for local development.

1. Fork the pyunlocbox repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/pyunlocbox.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv pyunlocbox
$ cd pyunlocbox/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 pyunlocbox tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check https://travis-ci.org/epfl-
lts2/pyunlocbox/pull_requests and make sure that the tests pass for all supported Python versions.

22 Chapter 4. Contributing

https://travis-ci.org/epfl-lts2/pyunlocbox/pull_requests
https://travis-ci.org/epfl-lts2/pyunlocbox/pull_requests

pyunlocbox Documentation, Release 0.1.0

4.4 Tips

To run a subset of tests:

$ python -m unittest tests.test_pyunlocbox

4.4. Tips 23

pyunlocbox Documentation, Release 0.1.0

24 Chapter 4. Contributing

CHAPTER 5

History

5.1 0.1.0 (2014-06-08)

First usable version, available on GitHub and released on PyPI. Still experimental.

Features :

• Forward-backward splitting algorithm

• L1-norm function (eval and prox)

• L2-norm function (eval, grad and prox)

• Least square problem tutorial using L2-norm and forward-backward

• Compressed sensing tutorial using L1-norm, L2-norm and forward-backward

Infrastructure :

• Sphinx generated documentation using Numpy style docstrings

• Documentation hosted on Read the Docs

• Code hosted on GitHub

• Package hosted on PyPI

• Code checked by flake8

• Docstring and tutorial examples checked by doctest (as a test suite)

• Unit tests for functions module (as a test suite)

• All test suites executed in Python 2.6, 2.7 and 3.2 virtualenvs by tox

• Distributed automatic testing on Travis CI continuous integration platform

25

pyunlocbox Documentation, Release 0.1.0

26 Chapter 5. History

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

27

pyunlocbox Documentation, Release 0.1.0

28 Chapter 6. Indices and tables

Python Module Index

p
pyunlocbox, 11
pyunlocbox.functions, 15
pyunlocbox.solvers, 19

29

pyunlocbox Documentation, Release 0.1.0

30 Python Module Index

Index

A
algo() (pyunlocbox.solvers.solver method), 18

D
dummy (class in pyunlocbox.functions), 13

E
eval() (pyunlocbox.functions.func method), 12

F
forward_backward (class in pyunlocbox.solvers), 18
func (class in pyunlocbox.functions), 11

G
grad() (pyunlocbox.functions.func method), 12

N
norm (class in pyunlocbox.functions), 13
norm_l1 (class in pyunlocbox.functions), 14
norm_l2 (class in pyunlocbox.functions), 15

P
post() (pyunlocbox.solvers.solver method), 18
pre() (pyunlocbox.solvers.solver method), 18
prox() (pyunlocbox.functions.func method), 12
pyunlocbox (module), 11
pyunlocbox.functions (module), 15
pyunlocbox.solvers (module), 19

S
solve() (in module pyunlocbox.solvers), 15
solver (class in pyunlocbox.solvers), 17

31

	About
	Features
	Installation
	Authors

	Tutorials
	Simple least square problem
	Compressed sensing using forward-backward

	Reference guide
	Toolbox overview
	Functions module
	Solvers module

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	History
	0.1.0 (2014-06-08)

	Indices and tables
	Python Module Index

